1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#[cfg(test)]
#[path = "../../tests/unit/models/goal_test.rs"]
mod goal_test;

use crate::construction::enablers::*;
use crate::construction::heuristics::*;
use crate::models::common::Cost;
use crate::models::problem::Job;
use hashbrown::{HashMap, HashSet};
use rand::prelude::SliceRandom;
use rosomaxa::algorithms::nsga2::dominance_order;
use rosomaxa::population::Shuffled;
use rosomaxa::prelude::*;
use std::cmp::Ordering;
use std::slice::Iter;
use std::sync::Arc;

/// Defines Vehicle Routing Problem variant by global and local objectives:
/// A **global objective** defines the way two VRP solutions are compared in order to select better one:
/// for example, given the same amount of assigned jobs, prefer less tours used instead of total
/// solution cost.
///
/// A **local objective** defines how single VRP solution is created/modified. It specifies hard
/// constraints such as vehicle capacity, time windows, skills, etc. Also it defines soft constraints
/// which are used to guide search in preferred by global objective direction: reduce amount of tours
/// served, maximize total value of assigned jobs, etc.
///
/// Both, global and local objectives, are specified by individual **features**. In general, a **Feature**
/// encapsulates a single VRP aspect, such as capacity constraint for job' demand, time limitations
/// for vehicles/jobs, etc.
#[derive(Clone, Default)]
pub struct GoalContext {
    pub(crate) hierarchical_objectives: Vec<Vec<Arc<dyn FeatureObjective<Solution = InsertionContext> + Send + Sync>>>,
    pub(crate) flat_objectives: Vec<Arc<dyn FeatureObjective<Solution = InsertionContext> + Send + Sync>>,
    pub(crate) local_objectives: Vec<Vec<Arc<dyn FeatureObjective<Solution = InsertionContext> + Send + Sync>>>,
    pub(crate) constraints: Vec<Arc<dyn FeatureConstraint + Send + Sync>>,
    pub(crate) states: Vec<Arc<dyn FeatureState + Send + Sync>>,
}

impl GoalContext {
    /// Creates a new instance of `VrpVariant` with features specified using information about
    /// hierarchy of objectives.
    pub fn new(
        features: &[Feature],
        global_objective_map: &[Vec<String>],
        local_objective_map: &[Vec<String>],
    ) -> Result<Self, String> {
        let ids_all = features
            .iter()
            .filter_map(|feature| feature.objective.as_ref().map(|_| feature.name.clone()))
            .collect::<Vec<_>>();

        let ids_unique = ids_all.iter().collect::<HashSet<_>>();
        if ids_unique.len() != ids_all.len() {
            return Err(format!(
                "some of the features are defined more than once, check ids list: {}",
                ids_all.join(",")
            ));
        }

        let check_objective_map = |objective_map: &[Vec<String>]| {
            let objective_ids_all = objective_map.iter().flat_map(|objective| objective.iter()).collect::<Vec<_>>();
            let objective_ids_unique = objective_ids_all.iter().cloned().collect::<HashSet<_>>();
            objective_ids_all.len() == objective_ids_unique.len() && objective_ids_unique.is_subset(&ids_unique)
        };

        if !check_objective_map(global_objective_map) {
            return Err(
                "global objective map is invalid: it should contain unique ids of the features specified".to_string()
            );
        }

        if !check_objective_map(local_objective_map) {
            return Err(
                "local objective map is invalid: it should contain unique ids of the features specified".to_string()
            );
        }

        let feature_map = features
            .iter()
            .filter_map(|feature| feature.objective.as_ref().map(|objective| (feature.name.clone(), objective.clone())))
            .collect::<HashMap<_, _>>();

        let remap_objectives = |objective_map: &[Vec<String>]| -> Result<Vec<_>, String> {
            objective_map.iter().try_fold(Vec::default(), |mut acc_outer, ids| {
                acc_outer.push(ids.iter().try_fold(Vec::default(), |mut acc_inner, id| {
                    if let Some(objective) = feature_map.get(id) {
                        acc_inner.push(objective.clone());
                        Ok(acc_inner)
                    } else {
                        Err(format!("cannot find objective for feature with id: {id}"))
                    }
                })?);

                Ok(acc_outer)
            })
        };

        let hierarchical_objectives = remap_objectives(global_objective_map)?;
        let local_objectives = remap_objectives(local_objective_map)?;

        let states = features.iter().filter_map(|feature| feature.state.clone()).collect();
        let constraints = features.iter().filter_map(|feature| feature.constraint.clone()).collect();
        let flat_objectives = hierarchical_objectives.iter().flat_map(|inners| inners.iter()).cloned().collect();

        Ok(Self { hierarchical_objectives, flat_objectives, local_objectives, constraints, states })
    }
}

/// An individual feature which is used to build a specific VRP variant, e.g. capacity restriction,
/// job values, etc. Each feature consists of three optional parts (but at least one should be defined):
/// * **constraint**: an invariant which should be hold to have a feasible VRP solution in the end.
/// A good examples are hard constraints such as capacity, time, travel limits, etc.
///
/// * **objective**: an objective of the optimization such as minimization of unassigned jobs or tours.
///  All objectives form together a hierarchy which describes a goal of optimization, including
///  various soft constraints: assignment of preferred jobs, optional breaks, etc. This helps to
///  guide the search on the global objective level (e.g. comparison of various solutions in order to
///  find out which one is "better") and local objective level (e.g. which job should be inserted next
///  into specific solution).
///
/// * **state**: the corresponding cached data of constraint/objective to speedup their evaluations.
///
/// As mentioned above, at least one part should be defined. Some rules of thumb:
/// * each soft constraint requires an objective so that goal of optimization is reflected on global
///   and local levels
/// * hard constraint can be defined without objective as this is an invariant
/// * state should be used to avoid expensive calculations during insertion evaluation phase.
///   `FeatureObjective::estimate` and `FeatureConstraint::evaluate` methods are called during this phase.
///  Additionally, it can be used to do some solution modifications at `FeatureState::accept_solution_state`.
#[derive(Clone, Default)]
pub struct Feature {
    /// An unique id of the feature.
    pub name: String,
    /// A hard constraint.
    pub constraint: Option<Arc<dyn FeatureConstraint + Send + Sync>>,
    /// An objective which models soft constraints.
    pub objective: Option<Arc<dyn FeatureObjective<Solution = InsertionContext> + Send + Sync>>,
    /// A state change handler.
    pub state: Option<Arc<dyn FeatureState + Send + Sync>>,
}

/// Specifies result of hard route constraint check.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ConstraintViolation {
    /// Violation code which is used as marker of specific constraint violated.
    pub code: ViolationCode,
    /// True if further insertions should not be attempted.
    pub stopped: bool,
}

impl ConstraintViolation {
    /// A constraint violation failure with stopped set to true.
    pub fn fail(code: ViolationCode) -> Option<Self> {
        Some(ConstraintViolation { code, stopped: true })
    }

    /// A constraint violation failure with stopped set to false.
    pub fn skip(code: ViolationCode) -> Option<Self> {
        Some(ConstraintViolation { code, stopped: false })
    }

    /// No constraint violation.
    pub fn success() -> Option<Self> {
        None
    }
}

/// Specifies a type for constraint violation code.
pub type ViolationCode = i32;

/// Specifies a type for state key.
pub type StateKey = i32;

/// Provides a way to build feature with some checks.
#[derive(Default)]
pub struct FeatureBuilder {
    feature: Feature,
}

impl FeatureBuilder {
    /// Combines multiple features into one.
    pub fn combine(name: &str, features: &[Feature]) -> Result<Feature, String> {
        combine_features(name, features)
    }

    /// Creates a builder from another feature
    pub fn from_feature(other: Feature) -> Self {
        Self { feature: other }
    }

    /// Sets given name.
    pub fn with_name(mut self, name: &str) -> Self {
        self.feature.name = name.to_string();
        self
    }

    /// Adds given constraint.
    pub fn with_constraint<T: FeatureConstraint + Send + Sync + 'static>(mut self, constraint: T) -> Self {
        self.feature.constraint = Some(Arc::new(constraint));
        self
    }

    /// Adds given objective.
    pub fn with_objective<T: FeatureObjective<Solution = InsertionContext> + Send + Sync + 'static>(
        mut self,
        objective: T,
    ) -> Self {
        self.feature.objective = Some(Arc::new(objective));
        self
    }

    /// Adds given state.
    pub fn with_state<T: FeatureState + Send + Sync + 'static>(mut self, state: T) -> Self {
        self.feature.state = Some(Arc::new(state));
        self
    }

    /// Tries to builds a feature.
    pub fn build(self) -> Result<Feature, String> {
        let feature = self.feature;

        if feature.name == String::default() {
            return Err("features with default id are not allowed".to_string());
        }

        if feature.constraint.is_none() && feature.objective.is_none() {
            Err("empty feature is not allowed".to_string())
        } else {
            Ok(feature)
        }
    }
}

/// Controls a cached state of the given feature.
pub trait FeatureState {
    /// Accept insertion of specific job into the route.
    /// Called once job has been inserted into solution represented via `solution_ctx`.
    /// Target route is defined by `route_index` which refers to `routes` collection in solution context.
    /// Inserted job is `job`.
    /// This method can call `accept_route_state` internally.
    /// This method should NOT modify amount of job activities in the tour.
    fn accept_insertion(&self, solution_ctx: &mut SolutionContext, route_index: usize, job: &Job);

    /// Accept route and updates its state to allow more efficient constraint checks.
    /// This method should NOT modify amount of job activities in the tour.
    fn accept_route_state(&self, route_ctx: &mut RouteContext);

    /// Accepts insertion solution context allowing to update job insertion data.
    /// This method called twice: before insertion of all jobs starts and when it ends.
    /// Please note, that it is important to update only stale routes as this allows to avoid
    /// updating non changed route states.
    fn accept_solution_state(&self, solution_ctx: &mut SolutionContext);

    /// Returns unique constraint state keys used to store some state. If the data is only read, then
    /// it shouldn't be returned.
    /// Used to avoid state key interference.
    fn state_keys(&self) -> Iter<StateKey>;
}

/// Defines feature constraint behavior.
pub trait FeatureConstraint {
    /// Evaluates hard constraints violations.
    fn evaluate(&self, move_ctx: &MoveContext<'_>) -> Option<ConstraintViolation>;

    /// Tries to merge two jobs taking into account common constraints.
    /// Returns a new job, if it is possible to merge them together having theoretically assignable
    /// job. Otherwise returns violation error code.
    fn merge(&self, source: Job, candidate: Job) -> Result<Job, ViolationCode>;
}

/// Defines feature objective behavior.
pub trait FeatureObjective: Objective {
    /// Estimates a cost of insertion.
    fn estimate(&self, move_ctx: &MoveContext<'_>) -> Cost;
}

impl MultiObjective for GoalContext {
    type Solution = InsertionContext;

    fn total_order(&self, a: &Self::Solution, b: &Self::Solution) -> Ordering {
        unwrap_from_result(self.hierarchical_objectives.iter().try_fold(Ordering::Equal, |_, objectives| {
            match dominance_order(a, b, objectives.iter().map(|o| o.as_ref())) {
                Ordering::Equal => Ok(Ordering::Equal),
                order => Err(order),
            }
        }))
    }

    fn fitness<'a>(&'a self, solution: &'a Self::Solution) -> Box<dyn Iterator<Item = f64> + 'a> {
        Box::new(self.flat_objectives.iter().map(|o| o.fitness(solution)))
    }

    fn get_order(&self, a: &Self::Solution, b: &Self::Solution, idx: usize) -> Result<Ordering, String> {
        self.flat_objectives
            .get(idx)
            .map(|o| o.total_order(a, b))
            .ok_or_else(|| format!("cannot get total_order with index: {idx}"))
    }

    fn get_distance(&self, a: &Self::Solution, b: &Self::Solution, idx: usize) -> Result<f64, String> {
        self.flat_objectives
            .get(idx)
            .map(|o| o.distance(a, b))
            .ok_or_else(|| format!("cannot get distance with index: {idx}"))
    }

    fn size(&self) -> usize {
        self.flat_objectives.len()
    }
}

impl HeuristicObjective for GoalContext {}

impl Shuffled for GoalContext {
    /// Returns a new instance of `ObjectiveCost` with shuffled objectives.
    fn get_shuffled(&self, random: &(dyn Random + Send + Sync)) -> Self {
        let mut hierarchical_objectives = self.hierarchical_objectives.clone();

        hierarchical_objectives.shuffle(&mut random.get_rng());

        Self { hierarchical_objectives, ..self.clone() }
    }
}

impl GoalContext {
    /// Accepts job insertion.
    pub fn accept_insertion(&self, solution_ctx: &mut SolutionContext, route_index: usize, job: &Job) {
        accept_insertion_with_states(&self.states, solution_ctx, route_index, job)
    }

    /// Accepts route state.
    pub fn accept_route_state(&self, route_ctx: &mut RouteContext) {
        accept_route_state_with_states(&self.states, route_ctx)
    }

    /// Accepts solution state.
    pub fn accept_solution_state(&self, solution_ctx: &mut SolutionContext) {
        accept_solution_state_with_states(&self.states, solution_ctx);
    }

    /// Tries to merge two jobs taking into account common constraints.
    /// Returns a new job, if it is possible to merge them together having theoretically assignable
    /// job. Otherwise returns violation error code.
    pub fn merge(&self, source: Job, candidate: Job) -> Result<Job, ViolationCode> {
        merge_with_constraints(&self.constraints, source, candidate)
    }

    /// Evaluates feasibility of the refinement move.
    pub fn evaluate(&self, move_ctx: &MoveContext<'_>) -> Option<ConstraintViolation> {
        evaluate_with_constraints(&self.constraints, move_ctx)
    }

    /// Estimates insertion cost (penalty) of the refinement move.
    pub fn estimate(&self, move_ctx: &MoveContext<'_>) -> Cost {
        self.local_objectives
            .iter()
            .flat_map(|objectives| objectives.iter().map(|objective| objective.estimate(move_ctx)))
            .fold(Cost::default(), |acc, other| acc + other)
    }
}