1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
use crate::construction::heuristics::InsertionContext;
use crate::construction::Quota;
use crate::models::Problem;
use crate::solver::mutation::{Mutation, Recreate};
use crate::solver::population::DominancePopulation;
use crate::solver::telemetry::Telemetry;
use crate::solver::termination::Termination;
use crate::solver::{Metrics, Population, RefinementContext};
use crate::utils::{Random, Timer};
use std::sync::Arc;

/// A configuration which controls evolution execution.
pub struct EvolutionConfig {
    /// An original problem.
    pub problem: Arc<Problem>,
    /// A mutation applied to population.
    pub mutation: Box<dyn Mutation>,
    /// A termination defines when evolution should stop.
    pub termination: Box<dyn Termination>,
    /// A quota for evolution execution.
    pub quota: Option<Box<dyn Quota + Send + Sync>>,

    /// Population size.
    pub population_size: usize,
    /// Offspring size.
    pub offspring_size: usize,
    /// Elite size.
    pub elite_size: usize,
    /// Initial size of population to be generated.
    pub initial_size: usize,
    /// Create methods to produce initial individuals.
    pub initial_methods: Vec<(Box<dyn Recreate>, usize)>,
    /// Initial individuals in population.
    pub initial_individuals: Vec<InsertionContext>,

    /// Random generator.
    pub random: Arc<dyn Random + Send + Sync>,
    /// A telemetry to be used.
    pub telemetry: Telemetry,
}

/// An entity which simulates evolution process.
pub struct EvolutionSimulator {
    problem: Arc<Problem>,
    config: EvolutionConfig,
}

impl EvolutionSimulator {
    pub fn new(problem: Arc<Problem>, config: EvolutionConfig) -> Result<Self, String> {
        if config.initial_size < 1 {
            return Err("initial size should be greater than 0".to_string());
        }

        if config.initial_size > config.population_size {
            return Err("initial size should be less or equal population size".to_string());
        }

        if config.initial_methods.is_empty() {
            return Err("at least one initial method has to be specified".to_string());
        }

        Ok(Self { problem, config })
    }

    /// Runs evolution for given `problem` using evolution `config`.
    /// Returns populations filled with solutions.
    pub fn run(mut self) -> Result<(Box<dyn Population>, Option<Metrics>), String> {
        self.config.telemetry.start();

        let mut refinement_ctx = self.create_refinement_ctx()?;

        // NOTE at the moment, only one solution is produced per generation
        while !self.config.termination.is_termination(&mut refinement_ctx) {
            let generation_time = Timer::start();

            let insertion_ctx =
                refinement_ctx.population.select().ok_or_else(|| "Empty population".to_string())?.deep_copy();

            let insertion_ctx = self.config.mutation.mutate(&mut refinement_ctx, insertion_ctx);

            Self::add_solution(&mut refinement_ctx, insertion_ctx);

            self.config.telemetry.on_progress(&refinement_ctx, generation_time);

            refinement_ctx.generation += 1;
        }

        self.config.telemetry.on_result(&refinement_ctx);

        Ok((refinement_ctx.population, self.config.telemetry.get_metrics()))
    }

    /// Creates refinement context with population containing initial individuals.
    fn create_refinement_ctx(&mut self) -> Result<RefinementContext, String> {
        let mut refinement_ctx = RefinementContext::new(
            self.problem.clone(),
            Box::new(DominancePopulation::new(
                self.problem.clone(),
                self.config.random.clone(),
                self.config.population_size,
                self.config.offspring_size,
                self.config.elite_size,
            )),
            std::mem::replace(&mut self.config.quota, None),
        );

        std::mem::replace(&mut self.config.initial_individuals, vec![])
            .into_iter()
            .take(self.config.initial_size)
            .for_each(|ctx| refinement_ctx.population.add(ctx));

        let weights = self.config.initial_methods.iter().map(|(_, weight)| *weight).collect::<Vec<_>>();
        let empty_ctx = InsertionContext::new(self.problem.clone(), self.config.random.clone());

        let indices: Vec<_> = if self.config.initial_size <= self.config.initial_methods.len() {
            (0..self.config.initial_size).collect()
        } else {
            (refinement_ctx.population.size()..self.config.initial_size)
                .map(|_| self.config.random.weighted(weights.as_slice()))
                .collect()
        };

        let _ = indices.into_iter().enumerate().try_for_each(|(idx, method_idx)| {
            let item_time = Timer::start();

            if self.config.termination.is_termination(&mut refinement_ctx) {
                return Err(());
            }

            let insertion_ctx =
                self.config.initial_methods[method_idx].0.run(&mut refinement_ctx, empty_ctx.deep_copy());

            Self::add_solution(&mut refinement_ctx, insertion_ctx);

            self.config.telemetry.on_initial(idx, self.config.initial_size, item_time);

            Ok(())
        });

        Ok(refinement_ctx)
    }

    fn add_solution(refinement_ctx: &mut RefinementContext, insertion_ctx: InsertionContext) {
        let is_quota_reached = refinement_ctx.quota.as_ref().map_or(false, |quota| quota.is_reached());
        let is_population_empty = refinement_ctx.population.size() == 0;

        // NOTE fix population not to accept solution with worse primary objective fitness as best
        if is_population_empty || !is_quota_reached {
            refinement_ctx.population.add(insertion_ctx);
        }
    }
}