1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#[cfg(test)]
#[path = "../../../tests/unit/models/problem/costs_test.rs"]
mod costs_test;

use crate::models::common::*;
use crate::models::problem::Actor;
use crate::models::solution::{Activity, Route};
use hashbrown::HashMap;
use rosomaxa::prelude::*;
use rosomaxa::utils::CollectGroupBy;
use std::cmp::Ordering;
use std::ops::Deref;
use std::sync::Arc;

/// Specifies travel time type.
#[derive(Copy, Clone)]
pub enum TravelTime {
    /// Arrival time type.
    Arrival(Timestamp),
    /// Departure time type
    Departure(Timestamp),
}

/// Provides the way to get cost information for specific activities done by specific actor.
pub trait ActivityCost {
    /// Returns cost to perform activity.
    fn cost(&self, route: &Route, activity: &Activity, arrival: Timestamp) -> Cost {
        let actor = route.actor.as_ref();

        let waiting = if activity.place.time.start > arrival { activity.place.time.start - arrival } else { 0. };
        let service = activity.place.duration;

        waiting * (actor.driver.costs.per_waiting_time + actor.vehicle.costs.per_waiting_time)
            + service * (actor.driver.costs.per_service_time + actor.vehicle.costs.per_service_time)
    }

    /// Estimates departure time for activity and actor at given arrival time.
    fn estimate_departure(&self, route: &Route, activity: &Activity, arrival: Timestamp) -> Timestamp;

    /// Estimates arrival time for activity and actor at given departure time.
    fn estimate_arrival(&self, route: &Route, activity: &Activity, departure: Timestamp) -> Timestamp;
}

/// An actor independent activity costs.
#[derive(Default)]
pub struct SimpleActivityCost {}

impl ActivityCost for SimpleActivityCost {
    fn estimate_departure(&self, _: &Route, activity: &Activity, arrival: Timestamp) -> Timestamp {
        arrival.max(activity.place.time.start) + activity.place.duration
    }

    fn estimate_arrival(&self, _: &Route, activity: &Activity, departure: Timestamp) -> Timestamp {
        activity.place.time.end.min(departure - activity.place.duration)
    }
}

/// Specifies reserved time index type.
pub type ReservedTimesIndex = HashMap<Arc<Actor>, Vec<TimeSpan>>;

/// Specifies a function which returns an extra reserved time for given actor and time window
/// which will be considered by specific costs.
type ReservedTimesFunc = Arc<dyn Fn(&Route, &TimeWindow) -> Option<TimeWindow> + Send + Sync>;

/// Provides way to calculate activity costs which might contain reserved time.
pub struct DynamicActivityCost {
    reserved_times_func: ReservedTimesFunc,
}

impl DynamicActivityCost {
    /// Creates a new instance of `DynamicActivityCost` with given reserved time function.
    pub fn new(reserved_times_index: ReservedTimesIndex) -> Result<Self, String> {
        Ok(Self { reserved_times_func: create_reserved_times_func(reserved_times_index)? })
    }
}

impl ActivityCost for DynamicActivityCost {
    fn estimate_departure(&self, route: &Route, activity: &Activity, arrival: Timestamp) -> Timestamp {
        let activity_start = arrival.max(activity.place.time.start);
        let departure = activity_start + activity.place.duration;
        let schedule = TimeWindow::new(arrival, departure);

        self.reserved_times_func.deref()(route, &schedule).map_or(departure, |reserved_time: TimeWindow| {
            assert!(reserved_time.intersects(&schedule));

            let time_window = &activity.place.time;

            let extra_duration = if reserved_time.start < time_window.start {
                let waiting_time = TimeWindow::new(arrival, time_window.start);
                let overlapping = waiting_time.overlapping(&reserved_time).map(|tw| tw.duration()).unwrap_or(0.);

                reserved_time.duration() - overlapping
            } else {
                reserved_time.duration()
            };

            // NOTE: do not allow to start or restart work after break finished
            if activity_start + extra_duration > activity.place.time.end {
                // TODO this branch is the reason why departure rescheduling is disabled.
                //      theoretically, rescheduling should be aware somehow about dynamic costs
                f64::MAX
            } else {
                departure + extra_duration
            }
        })
    }

    fn estimate_arrival(&self, route: &Route, activity: &Activity, departure: Timestamp) -> Timestamp {
        let arrival = activity.place.time.end.min(departure - activity.place.duration);
        let schedule = TimeWindow::new(arrival, departure);

        self.reserved_times_func.deref()(route, &schedule).map_or(arrival, |reserved_time: TimeWindow| {
            // TODO consider overlapping break with waiting time?
            arrival - reserved_time.duration()
        })
    }
}

/// Provides the way to get routing information for specific locations and actor.
pub trait TransportCost {
    /// Returns time-dependent transport cost between two locations for given actor.
    fn cost(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Cost {
        let actor = route.actor.as_ref();

        let distance = self.distance(route, from, to, travel_time);
        let duration = self.duration(route, from, to, travel_time);

        distance * (actor.driver.costs.per_distance + actor.vehicle.costs.per_distance)
            + duration * (actor.driver.costs.per_driving_time + actor.vehicle.costs.per_driving_time)
    }

    /// Returns time-independent travel duration between locations specific for given profile.
    fn duration_approx(&self, profile: &Profile, from: Location, to: Location) -> Duration;

    /// Returns time-independent travel distance between locations specific for given profile.
    fn distance_approx(&self, profile: &Profile, from: Location, to: Location) -> Distance;

    /// Returns time-dependent travel duration between locations specific for given actor.
    fn duration(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Duration;

    /// Returns time-dependent travel distance between locations specific for given actor.
    fn distance(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Distance;
}

/// Provides way to calculate transport costs which might contain reserved time.
pub struct DynamicTransportCost {
    reserved_times_func: ReservedTimesFunc,
    inner: Arc<dyn TransportCost + Send + Sync>,
}

impl DynamicTransportCost {
    /// Creates a new instance of `DynamicTransportCost`.
    pub fn new(
        reserved_times_index: ReservedTimesIndex,
        inner: Arc<dyn TransportCost + Send + Sync>,
    ) -> Result<Self, String> {
        Ok(Self { reserved_times_func: create_reserved_times_func(reserved_times_index)?, inner })
    }
}

impl TransportCost for DynamicTransportCost {
    fn duration_approx(&self, profile: &Profile, from: Location, to: Location) -> Duration {
        self.inner.duration_approx(profile, from, to)
    }

    fn distance_approx(&self, profile: &Profile, from: Location, to: Location) -> Distance {
        self.inner.distance_approx(profile, from, to)
    }

    fn duration(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Duration {
        let duration = self.inner.duration(route, from, to, travel_time);

        let time_window = match travel_time {
            TravelTime::Arrival(arrival) => TimeWindow::new(arrival - duration, arrival),
            TravelTime::Departure(departure) => TimeWindow::new(departure, departure + duration),
        };

        self.reserved_times_func.deref()(route, &time_window)
            .map_or(duration, |reserved_time: TimeWindow| duration + reserved_time.duration())
    }

    fn distance(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Distance {
        self.inner.distance(route, from, to, travel_time)
    }
}

/// Contains matrix routing data for specific profile and, optionally, time.
pub struct MatrixData {
    /// A routing profile index.
    pub index: usize,
    /// A timestamp for which routing info is applicable.
    pub timestamp: Option<Timestamp>,
    /// Travel durations.
    pub durations: Vec<Duration>,
    /// Travel distances.
    pub distances: Vec<Distance>,
}

impl MatrixData {
    /// Creates `MatrixData` instance.
    pub fn new(index: usize, timestamp: Option<Timestamp>, durations: Vec<Duration>, distances: Vec<Distance>) -> Self {
        Self { index, timestamp, durations, distances }
    }
}

/// Creates time agnostic or time aware routing costs based on matrix data passed.
pub fn create_matrix_transport_cost(costs: Vec<MatrixData>) -> Result<Arc<dyn TransportCost + Send + Sync>, String> {
    if costs.is_empty() {
        return Err("no matrix data found".to_string());
    }

    let size = (costs.first().unwrap().durations.len() as f64).sqrt().round() as usize;

    if costs.iter().any(|matrix| matrix.distances.len() != matrix.durations.len()) {
        return Err("distance and duration collections have different length".to_string());
    }

    if costs.iter().any(|matrix| (matrix.distances.len() as f64).sqrt().round() as usize != size) {
        return Err("distance lengths don't match".to_string());
    }

    if costs.iter().any(|matrix| (matrix.durations.len() as f64).sqrt().round() as usize != size) {
        return Err("duration lengths don't match".to_string());
    }

    Ok(if costs.iter().any(|costs| costs.timestamp.is_some()) {
        Arc::new(TimeAwareMatrixTransportCost::new(costs, size)?)
    } else {
        Arc::new(TimeAgnosticMatrixTransportCost::new(costs, size)?)
    })
}

/// A time agnostic matrix routing costs.
struct TimeAgnosticMatrixTransportCost {
    durations: Vec<Vec<Duration>>,
    distances: Vec<Vec<Distance>>,
    size: usize,
}

impl TimeAgnosticMatrixTransportCost {
    /// Creates an instance of `TimeAgnosticMatrixTransportCost`.
    pub fn new(costs: Vec<MatrixData>, size: usize) -> Result<Self, String> {
        let mut costs = costs;
        costs.sort_by(|a, b| a.index.cmp(&b.index));

        if costs.iter().any(|costs| costs.timestamp.is_some()) {
            return Err("time aware routing".to_string());
        }

        if (0..).zip(costs.iter().map(|c| &c.index)).any(|(a, &b)| a != b) {
            return Err("duplicate profiles can be passed only for time aware routing".to_string());
        }

        let (durations, distances) = costs.into_iter().fold((vec![], vec![]), |mut acc, data| {
            acc.0.push(data.durations);
            acc.1.push(data.distances);

            acc
        });

        Ok(Self { durations, distances, size })
    }
}

impl TransportCost for TimeAgnosticMatrixTransportCost {
    fn duration_approx(&self, profile: &Profile, from: Location, to: Location) -> Duration {
        *self.durations.get(profile.index).unwrap().get(from * self.size + to).unwrap() * profile.scale
    }

    fn distance_approx(&self, profile: &Profile, from: Location, to: Location) -> Distance {
        *self.distances.get(profile.index).unwrap().get(from * self.size + to).unwrap()
    }

    fn duration(&self, route: &Route, from: Location, to: Location, _: TravelTime) -> Duration {
        self.duration_approx(&route.actor.vehicle.profile, from, to)
    }

    fn distance(&self, route: &Route, from: Location, to: Location, _: TravelTime) -> Distance {
        self.distance_approx(&route.actor.vehicle.profile, from, to)
    }
}

/// A time aware matrix costs.
struct TimeAwareMatrixTransportCost {
    costs: HashMap<usize, (Vec<u64>, Vec<MatrixData>)>,
    size: usize,
}

impl TimeAwareMatrixTransportCost {
    /// Creates an instance of `TimeAwareMatrixTransportCost`.
    fn new(costs: Vec<MatrixData>, size: usize) -> Result<Self, String> {
        if costs.iter().any(|matrix| matrix.timestamp.is_none()) {
            return Err("time-aware routing requires all matrices to have timestamp".to_string());
        }

        let costs = costs.into_iter().collect_group_by_key(|matrix| matrix.index);

        if costs.iter().any(|(_, matrices)| matrices.len() == 1) {
            return Err("should not use time aware matrix routing with single matrix".to_string());
        }

        let costs = costs
            .into_iter()
            .map(|(profile, mut matrices)| {
                matrices.sort_by(|a, b| (a.timestamp.unwrap() as u64).cmp(&(b.timestamp.unwrap() as u64)));
                let timestamps = matrices.iter().map(|matrix| matrix.timestamp.unwrap() as u64).collect();

                (profile, (timestamps, matrices))
            })
            .collect();

        Ok(Self { costs, size })
    }

    fn interpolate_duration(
        &self,
        profile: &Profile,
        from: Location,
        to: Location,
        travel_time: TravelTime,
    ) -> Duration {
        let timestamp = match travel_time {
            TravelTime::Arrival(arrival) => arrival,
            TravelTime::Departure(departure) => departure,
        };

        let (timestamps, matrices) = self.costs.get(&profile.index).unwrap();
        let data_idx = from * self.size + to;

        profile.scale
            * match timestamps.binary_search(&(timestamp as u64)) {
                Ok(matrix_idx) => *matrices.get(matrix_idx).unwrap().durations.get(data_idx).unwrap(),
                Err(matrix_idx) if matrix_idx == 0 => *matrices.first().unwrap().durations.get(data_idx).unwrap(),
                Err(matrix_idx) if matrix_idx == matrices.len() => {
                    *matrices.last().unwrap().durations.get(data_idx).unwrap()
                }
                Err(matrix_idx) => {
                    let left_matrix = matrices.get(matrix_idx - 1).unwrap();
                    let right_matrix = matrices.get(matrix_idx).unwrap();

                    let left_value = *matrices.get(matrix_idx - 1).unwrap().durations.get(data_idx).unwrap();
                    let right_value = *matrices.get(matrix_idx).unwrap().durations.get(data_idx).unwrap();

                    // perform linear interpolation
                    let ratio = (timestamp - left_matrix.timestamp.unwrap())
                        / (right_matrix.timestamp.unwrap() - left_matrix.timestamp.unwrap());

                    left_value + ratio * (right_value - left_value)
                }
            }
    }

    fn interpolate_distance(
        &self,
        profile: &Profile,
        from: Location,
        to: Location,
        travel_time: TravelTime,
    ) -> Distance {
        let timestamp = match travel_time {
            TravelTime::Arrival(arrival) => arrival,
            TravelTime::Departure(departure) => departure,
        };

        let (timestamps, matrices) = self.costs.get(&profile.index).unwrap();
        let data_idx = from * self.size + to;

        match timestamps.binary_search(&(timestamp as u64)) {
            Ok(matrix_idx) => *matrices.get(matrix_idx).unwrap().distances.get(data_idx).unwrap(),
            Err(matrix_idx) if matrix_idx == 0 => *matrices.first().unwrap().distances.get(data_idx).unwrap(),
            Err(matrix_idx) if matrix_idx == matrices.len() => {
                *matrices.last().unwrap().distances.get(data_idx).unwrap()
            }
            Err(matrix_idx) => *matrices.get(matrix_idx - 1).unwrap().distances.get(data_idx).unwrap(),
        }
    }
}

impl TransportCost for TimeAwareMatrixTransportCost {
    fn duration_approx(&self, profile: &Profile, from: Location, to: Location) -> Duration {
        self.interpolate_duration(profile, from, to, TravelTime::Departure(0.))
    }

    fn distance_approx(&self, profile: &Profile, from: Location, to: Location) -> Distance {
        self.interpolate_distance(profile, from, to, TravelTime::Departure(0.))
    }

    fn duration(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Duration {
        self.interpolate_duration(&route.actor.vehicle.profile, from, to, travel_time)
    }

    fn distance(&self, route: &Route, from: Location, to: Location, travel_time: TravelTime) -> Distance {
        self.interpolate_distance(&route.actor.vehicle.profile, from, to, travel_time)
    }
}

fn create_reserved_times_func(reserved_times_index: ReservedTimesIndex) -> Result<ReservedTimesFunc, String> {
    if reserved_times_index.is_empty() {
        return Ok(Arc::new(|_, _| None));
    }

    let reserved_times = reserved_times_index.into_iter().try_fold(
        HashMap::<_, (Vec<_>, Vec<_>)>::new(),
        |mut acc, (actor, mut times)| {
            // NOTE do not allow different types to simplify interval searching
            let are_same_types = times.windows(2).all(|pair| {
                if let [a, b] = pair {
                    matches!(
                        (a, b),
                        (TimeSpan::Window(_), TimeSpan::Window(_)) | (TimeSpan::Offset(_), TimeSpan::Offset(_))
                    )
                } else {
                    false
                }
            });

            if !are_same_types {
                return Err("has reserved types of different time span types".to_string());
            }

            times.sort_by(|a, b| {
                let (a, b) = match (a, b) {
                    (TimeSpan::Window(a), TimeSpan::Window(b)) => (a.start, b.start),
                    (TimeSpan::Offset(a), TimeSpan::Offset(b)) => (a.start, b.start),
                    _ => unreachable!(),
                };
                compare_floats(a, b)
            });
            let has_no_intersections =
                times
                    .windows(2)
                    .all(|pair| if let [a, b] = pair { !a.intersects(0., &b.to_time_window(0.)) } else { false });

            if has_no_intersections {
                let (indices, intervals): (Vec<_>, Vec<_>) = times
                    .into_iter()
                    .map(|span| {
                        let start = match &span {
                            TimeSpan::Window(time) => time.start,
                            TimeSpan::Offset(time) => time.start,
                        };

                        (start as u64, span)
                    })
                    .unzip();
                acc.insert(actor, (indices, intervals));

                Ok(acc)
            } else {
                Err("reserved times have intersections".to_string())
            }
        },
    )?;

    Ok(Arc::new(move |route: &Route, time_window: &TimeWindow| {
        let offset = route.tour.start().map(|a| a.schedule.departure).unwrap_or(0.);

        reserved_times
            .get(&route.actor)
            .and_then(|(indices, intervals)| {
                // NOTE map absolute time window to time span's start/end
                let (interval_start, interval_end) = match intervals.first() {
                    Some(TimeSpan::Offset(_)) => (time_window.start - offset, time_window.end - offset),
                    Some(TimeSpan::Window(_)) => (time_window.start, time_window.end),
                    _ => unreachable!(),
                };

                match indices.binary_search(&(interval_start as u64)) {
                    Ok(idx) => intervals.get(idx),
                    Err(idx) => (idx.max(1) - 1..=idx) // NOTE left (earliest) wins
                        .map(|idx| intervals.get(idx))
                        .find(|reserved_time| {
                            reserved_time.map_or(false, |reserved_time| {
                                let (reserved_start, reserved_end) = match reserved_time {
                                    TimeSpan::Offset(to) => (to.start, to.end),
                                    TimeSpan::Window(tw) => (tw.start, tw.end),
                                };

                                // NOTE use exclusive intersection
                                compare_floats(interval_start, reserved_end) == Ordering::Less
                                    && compare_floats(reserved_start, interval_end) == Ordering::Less
                            })
                        })
                        .flatten(),
                }
            })
            .map(|span| span.to_time_window(offset))
    }))
}