1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use crate::construction::constraints::*;
use crate::construction::heuristics::*;
use crate::models::common::*;
use crate::models::problem::*;
use crate::models::solution::*;
use std::ops::Deref;
use std::slice::Iter;
use std::sync::Arc;
pub struct TravelLimitModule {
state_keys: Vec<i32>,
constraints: Vec<ConstraintVariant>,
tour_duration_limit: Arc<dyn Fn(&Actor) -> Option<Duration> + Send + Sync>,
}
impl ConstraintModule for TravelLimitModule {
fn accept_insertion(&self, _: &mut SolutionContext, _: usize, _: &Job) {}
fn accept_route_state(&self, route_ctx: &mut RouteContext) {
if let Some(limit_duration) = self.tour_duration_limit.deref()(route_ctx.route.actor.as_ref()) {
route_ctx.state_mut().put_route_state(LIMIT_DURATION_KEY, limit_duration);
}
}
fn accept_solution_state(&self, _: &mut SolutionContext) {}
fn merge(&self, source: Job, _: Job) -> Result<Job, i32> {
Ok(source)
}
fn state_keys(&self) -> Iter<i32> {
self.state_keys.iter()
}
fn get_constraints(&self) -> Iter<ConstraintVariant> {
self.constraints.iter()
}
}
impl TravelLimitModule {
pub fn new(
transport: Arc<dyn TransportCost + Send + Sync>,
tour_distance_limit: Arc<dyn Fn(&Actor) -> Option<Distance> + Send + Sync>,
tour_duration_limit: Arc<dyn Fn(&Actor) -> Option<Duration> + Send + Sync>,
distance_code: i32,
duration_code: i32,
) -> Self {
Self {
tour_duration_limit: tour_duration_limit.clone(),
state_keys: Vec::default(),
constraints: vec![ConstraintVariant::HardActivity(Arc::new(TravelHardActivityConstraint {
distance_code,
duration_code,
transport,
tour_distance_limit,
tour_duration_limit,
}))],
}
}
}
struct TravelHardActivityConstraint {
distance_code: i32,
duration_code: i32,
transport: Arc<dyn TransportCost + Send + Sync>,
tour_distance_limit: Arc<dyn Fn(&Actor) -> Option<Distance> + Send + Sync>,
tour_duration_limit: Arc<dyn Fn(&Actor) -> Option<Duration> + Send + Sync>,
}
impl HardActivityConstraint for TravelHardActivityConstraint {
fn evaluate_activity(
&self,
route_ctx: &RouteContext,
activity_ctx: &ActivityContext,
) -> Option<ActivityConstraintViolation> {
let tour_distance_limit = self.tour_distance_limit.deref()(route_ctx.route.actor.as_ref());
let tour_duration_limit = self.tour_duration_limit.deref()(route_ctx.route.actor.as_ref());
if tour_distance_limit.is_some() || tour_duration_limit.is_some() {
let (change_distance, change_duration) = self.calculate_travel(route_ctx.route.as_ref(), activity_ctx);
if let Some(distance_limit) = tour_distance_limit {
let curr_dis = route_ctx.state.get_route_state(TOTAL_DISTANCE_KEY).cloned().unwrap_or(0.);
let total_distance = curr_dis + change_distance;
if distance_limit < total_distance {
return stop(self.distance_code);
}
}
if let Some(duration_limit) = tour_duration_limit {
let curr_dur = route_ctx.state.get_route_state(TOTAL_DURATION_KEY).cloned().unwrap_or(0.);
let total_duration = curr_dur + change_duration;
if duration_limit < total_duration {
return stop(self.duration_code);
}
}
}
None
}
}
impl TravelHardActivityConstraint {
fn calculate_travel(&self, route: &Route, activity_ctx: &ActivityContext) -> (Distance, Duration) {
let prev = activity_ctx.prev;
let tar = activity_ctx.target;
let next = activity_ctx.next;
let prev_dep = prev.schedule.departure;
let (prev_to_tar_dis, prev_to_tar_dur) = self.calculate_leg_travel_info(route, prev, tar, prev_dep);
if next.is_none() {
return (prev_to_tar_dis, prev_to_tar_dur);
}
let next = next.unwrap();
let tar_dep = prev_dep + prev_to_tar_dur;
let (prev_to_next_dis, prev_to_next_dur) = self.calculate_leg_travel_info(route, prev, next, prev_dep);
let (tar_to_next_dis, tar_to_next_dur) = self.calculate_leg_travel_info(route, tar, next, tar_dep);
(prev_to_tar_dis + tar_to_next_dis - prev_to_next_dis, prev_to_tar_dur + tar_to_next_dur - prev_to_next_dur)
}
fn calculate_leg_travel_info(
&self,
route: &Route,
first: &Activity,
second: &Activity,
departure: Timestamp,
) -> (Distance, Duration) {
let first_to_second_dis = self.transport.distance(
route,
first.place.location,
second.place.location,
TravelTime::Departure(departure),
);
let first_to_second_dur = self.transport.duration(
route,
first.place.location,
second.place.location,
TravelTime::Departure(departure),
);
let second_arr = departure + first_to_second_dur;
let second_wait = (second.place.time.start - second_arr).max(0.);
let second_dep = second_arr + second_wait + second.place.duration;
(first_to_second_dis, second_dep - departure)
}
}