1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#[cfg(test)]
#[path = "../../../tests/unit/construction/constraints/transport_test.rs"]
mod transport_test;
use crate::construction::constraints::*;
use crate::construction::heuristics::{ActivityContext, RouteContext, SolutionContext};
use crate::models::common::{Cost, Distance, Timestamp};
use crate::models::problem::{ActivityCost, Job, Single, TransportCost, TravelTime};
use crate::models::solution::Activity;
use crate::models::OP_START_MSG;
use std::slice::Iter;
use std::sync::Arc;
pub struct TransportConstraintModule {
state_keys: Vec<i32>,
constraints: Vec<ConstraintVariant>,
activity: Arc<dyn ActivityCost + Send + Sync>,
transport: Arc<dyn TransportCost + Send + Sync>,
}
impl ConstraintModule for TransportConstraintModule {
fn accept_insertion(&self, solution_ctx: &mut SolutionContext, route_index: usize, _job: &Job) {
let route_ctx = solution_ctx.routes.get_mut(route_index).unwrap();
self.accept_route_state(route_ctx);
}
fn accept_route_state(&self, ctx: &mut RouteContext) {
let activity = self.activity.as_ref();
let transport = self.transport.as_ref();
Self::update_route_schedules(ctx, activity, transport);
Self::update_route_states(ctx, activity, transport);
Self::update_statistics(ctx, transport);
}
fn accept_solution_state(&self, ctx: &mut SolutionContext) {
ctx.routes.iter_mut().filter(|route_ctx| route_ctx.is_stale()).for_each(|route_ctx| {
let activity = self.activity.as_ref();
let transport = self.transport.as_ref();
Self::update_route_schedules(route_ctx, activity, transport);
Self::update_route_states(route_ctx, activity, transport);
Self::update_statistics(route_ctx, transport);
})
}
fn merge(&self, source: Job, _candidate: Job) -> Result<Job, i32> {
Ok(source)
}
fn state_keys(&self) -> Iter<i32> {
self.state_keys.iter()
}
fn get_constraints(&self) -> Iter<ConstraintVariant> {
self.constraints.iter()
}
}
impl TransportConstraintModule {
pub fn new(
transport: Arc<dyn TransportCost + Send + Sync>,
activity: Arc<dyn ActivityCost + Send + Sync>,
time_window_code: i32,
) -> Self {
Self {
state_keys: vec![LATEST_ARRIVAL_KEY, WAITING_KEY, TOTAL_DISTANCE_KEY, TOTAL_DURATION_KEY],
constraints: vec![
ConstraintVariant::HardRoute(Arc::new(TimeHardRouteConstraint { code: time_window_code })),
ConstraintVariant::SoftRoute(Arc::new(RouteCostSoftRouteConstraint {})),
ConstraintVariant::HardActivity(Arc::new(TimeHardActivityConstraint {
code: time_window_code,
activity: activity.clone(),
transport: transport.clone(),
})),
ConstraintVariant::SoftActivity(Arc::new(CostSoftActivityConstraint {
transport: transport.clone(),
activity: activity.clone(),
})),
],
activity,
transport,
}
}
fn update_route_schedules(
route_ctx: &mut RouteContext,
activity: &(dyn ActivityCost + Send + Sync),
transport: &(dyn TransportCost + Send + Sync),
) {
let init = {
let start = route_ctx.route.tour.start().unwrap();
(start.place.location, start.schedule.departure)
};
let route = route_ctx.route.clone();
route_ctx.route_mut().tour.all_activities_mut().skip(1).fold(init, |(loc, dep), a| {
a.schedule.arrival = dep + transport.duration(&route, loc, a.place.location, TravelTime::Departure(dep));
a.schedule.departure = activity.estimate_departure(&route, a, a.schedule.arrival);
(a.place.location, a.schedule.departure)
});
}
fn update_route_states(
route_ctx: &mut RouteContext,
activity: &(dyn ActivityCost + Send + Sync),
transport: &(dyn TransportCost + Send + Sync),
) {
let actor = route_ctx.route.actor.clone();
let init = (
actor.detail.time.end,
actor
.detail
.end
.as_ref()
.unwrap_or_else(|| actor.detail.start.as_ref().unwrap_or_else(|| panic!("{}", OP_START_MSG)))
.location,
0_f64,
);
let route = route_ctx.route.clone();
let (route_mut, state) = route_ctx.as_mut();
route_mut.tour.all_activities().rev().fold(init, |acc, act| {
if act.job.is_none() {
return acc;
}
let (end_time, prev_loc, waiting) = acc;
let latest_departure =
end_time - transport.duration(&route, act.place.location, prev_loc, TravelTime::Arrival(end_time));
let latest_arrival_time = activity.estimate_arrival(&route, act, latest_departure);
let future_waiting = waiting + (act.place.time.start - act.schedule.arrival).max(0.);
state.put_activity_state(LATEST_ARRIVAL_KEY, act, latest_arrival_time);
state.put_activity_state(WAITING_KEY, act, future_waiting);
(latest_arrival_time, act.place.location, future_waiting)
});
}
fn update_statistics(route_ctx: &mut RouteContext, transport: &(dyn TransportCost + Send + Sync)) {
let route = route_ctx.route.clone();
let start = route.tour.start().unwrap();
let end = route.tour.end().unwrap();
let total_dur = end.schedule.departure - start.schedule.departure;
let init = (start.place.location, start.schedule.departure, Distance::default());
let (_, _, total_dist) = route.tour.all_activities().skip(1).fold(init, |(loc, dep, total_dist), a| {
let total_dist =
total_dist + transport.distance(route.as_ref(), loc, a.place.location, TravelTime::Departure(dep));
let total_dur = a.schedule.departure - start.schedule.departure;
route_ctx.state_mut().put_activity_state(TOTAL_DISTANCE_KEY, a, total_dist);
route_ctx.state_mut().put_activity_state(TOTAL_DURATION_KEY, a, total_dur);
(a.place.location, a.schedule.departure, total_dist)
});
route_ctx.state_mut().put_route_state(TOTAL_DISTANCE_KEY, total_dist);
route_ctx.state_mut().put_route_state(TOTAL_DURATION_KEY, total_dur);
}
pub(crate) fn update_route_departure(
ctx: &mut RouteContext,
activity: &(dyn ActivityCost + Send + Sync),
transport: &(dyn TransportCost + Send + Sync),
new_departure_time: Timestamp,
) {
let mut start = ctx.route_mut().tour.get_mut(0).unwrap();
start.schedule.departure = new_departure_time;
Self::update_route_schedules(ctx, activity, transport);
Self::update_route_states(ctx, activity, transport);
}
}
struct TimeHardRouteConstraint {
code: i32,
}
impl HardRouteConstraint for TimeHardRouteConstraint {
fn evaluate_job(&self, _: &SolutionContext, ctx: &RouteContext, job: &Job) -> Option<RouteConstraintViolation> {
let date = ctx.route.tour.start().unwrap().schedule.departure;
let check_single = |single: &Arc<Single>| {
single
.places
.iter()
.flat_map(|place| place.times.iter())
.any(|time| time.intersects(date, &ctx.route.actor.detail.time))
};
let has_time_intersection = match job {
Job::Single(single) => check_single(single),
Job::Multi(multi) => multi.jobs.iter().all(check_single),
};
if has_time_intersection {
None
} else {
Some(RouteConstraintViolation { code: self.code })
}
}
}
struct TimeHardActivityConstraint {
code: i32,
activity: Arc<dyn ActivityCost + Send + Sync>,
transport: Arc<dyn TransportCost + Send + Sync>,
}
impl HardActivityConstraint for TimeHardActivityConstraint {
fn evaluate_activity(
&self,
route_ctx: &RouteContext,
activity_ctx: &ActivityContext,
) -> Option<ActivityConstraintViolation> {
let actor = route_ctx.route.actor.as_ref();
let route = route_ctx.route.as_ref();
let prev = activity_ctx.prev;
let target = activity_ctx.target;
let next = activity_ctx.next;
let departure = prev.schedule.departure;
if actor.detail.time.end < prev.place.time.start
|| actor.detail.time.end < target.place.time.start
|| next.map_or(false, |next| actor.detail.time.end < next.place.time.start)
{
return fail(self.code);
}
let (next_act_location, latest_arr_time_at_next) = if let Some(next) = next {
if actor.detail.time.end < next.place.time.start {
return fail(self.code);
}
(
next.place.location,
*route_ctx.state.get_activity_state(LATEST_ARRIVAL_KEY, next).unwrap_or(&next.place.time.end),
)
} else {
(target.place.location, target.place.time.end.min(actor.detail.time.end))
};
let arr_time_at_next = departure
+ self.transport.duration(route, prev.place.location, next_act_location, TravelTime::Departure(departure));
if arr_time_at_next > latest_arr_time_at_next {
return fail(self.code);
}
if target.place.time.start > latest_arr_time_at_next {
return stop(self.code);
}
let arr_time_at_target = departure
+ self.transport.duration(
route,
prev.place.location,
target.place.location,
TravelTime::Departure(departure),
);
let latest_departure_at_target = latest_arr_time_at_next
- self.transport.duration(
route,
target.place.location,
next_act_location,
TravelTime::Arrival(latest_arr_time_at_next),
);
let latest_arr_time_at_target =
target.place.time.end.min(self.activity.estimate_arrival(route, target, latest_departure_at_target));
if arr_time_at_target > latest_arr_time_at_target {
return stop(self.code);
}
if next.is_none() {
return success();
}
let end_time_at_target = self.activity.estimate_departure(route, target, arr_time_at_target);
let arr_time_at_next = end_time_at_target
+ self.transport.duration(
route,
target.place.location,
next_act_location,
TravelTime::Departure(end_time_at_target),
);
if arr_time_at_next > latest_arr_time_at_next {
stop(self.code)
} else {
success()
}
}
}
struct RouteCostSoftRouteConstraint {}
impl SoftRouteConstraint for RouteCostSoftRouteConstraint {
fn estimate_job(&self, _: &SolutionContext, ctx: &RouteContext, _job: &Job) -> f64 {
if ctx.route.tour.job_count() == 0 {
ctx.route.actor.driver.costs.fixed + ctx.route.actor.vehicle.costs.fixed
} else {
0.
}
}
}
struct CostSoftActivityConstraint {
activity: Arc<dyn ActivityCost + Send + Sync>,
transport: Arc<dyn TransportCost + Send + Sync>,
}
impl CostSoftActivityConstraint {
fn analyze_route_leg(
&self,
route_ctx: &RouteContext,
start: &Activity,
end: &Activity,
time: Timestamp,
) -> (Cost, Cost, Timestamp) {
let route = route_ctx.route.as_ref();
let arrival = time
+ self.transport.duration(route, start.place.location, end.place.location, TravelTime::Departure(time));
let departure = self.activity.estimate_departure(route, end, arrival);
let transport_cost =
self.transport.cost(route, start.place.location, end.place.location, TravelTime::Departure(time));
let activity_cost = self.activity.cost(route, end, arrival);
(transport_cost, activity_cost, departure)
}
}
impl SoftActivityConstraint for CostSoftActivityConstraint {
fn estimate_activity(&self, route_ctx: &RouteContext, activity_ctx: &ActivityContext) -> f64 {
let prev = activity_ctx.prev;
let target = activity_ctx.target;
let next = activity_ctx.next;
let (tp_cost_left, act_cost_left, dep_time_left) =
self.analyze_route_leg(route_ctx, prev, target, prev.schedule.departure);
let (tp_cost_right, act_cost_right, dep_time_right) = if let Some(next) = next {
self.analyze_route_leg(route_ctx, target, next, dep_time_left)
} else {
(0., 0., 0.)
};
let new_costs = tp_cost_left + tp_cost_right + act_cost_left + act_cost_right;
if !route_ctx.route.tour.has_jobs() || next.is_none() {
return new_costs;
}
let next = next.unwrap();
let waiting_time = *route_ctx.state.get_activity_state(WAITING_KEY, next).unwrap_or(&0_f64);
let (tp_cost_old, act_cost_old, dep_time_old) =
self.analyze_route_leg(route_ctx, prev, next, prev.schedule.departure);
let waiting_cost = waiting_time.min(0.0_f64.max(dep_time_right - dep_time_old))
* route_ctx.route.actor.vehicle.costs.per_waiting_time;
let old_costs = tp_cost_old + act_cost_old + waiting_cost;
new_costs - old_costs
}
}