1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#[cfg(test)]
#[path = "../../../tests/unit/algorithms/gsom/node_test.rs"]
mod node_test;
use super::*;
use std::collections::VecDeque;
use std::sync::{Arc, RwLock};
pub struct Node<I: Input, S: Storage<Item = I>> {
pub weights: Vec<f64>,
pub error: f64,
pub total_hits: usize,
pub last_hits: VecDeque<usize>,
pub coordinate: Coordinate,
pub topology: Topology<I, S>,
pub storage: S,
hit_memory_size: usize,
}
pub struct Topology<I: Input, S: Storage<Item = I>> {
pub dimension: usize,
pub right: Option<NodeLink<I, S>>,
pub left: Option<NodeLink<I, S>>,
pub up: Option<NodeLink<I, S>>,
pub down: Option<NodeLink<I, S>>,
}
pub type NodeLink<I, S> = Arc<RwLock<Node<I, S>>>;
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct Coordinate(pub i32, pub i32);
impl<I: Input, S: Storage<Item = I>> Node<I, S> {
pub fn new(coordinate: Coordinate, weights: &[f64], error: f64, hit_memory_size: usize, storage: S) -> Self {
Self {
weights: weights.to_vec(),
error,
total_hits: 0,
last_hits: VecDeque::with_capacity(hit_memory_size + 1),
coordinate,
topology: Topology::empty(weights.len()),
storage,
hit_memory_size,
}
}
pub fn adjust(&mut self, target: &[f64], learning_rate: f64) {
debug_assert!(self.weights.len() == target.len());
for (idx, value) in target.iter().enumerate() {
self.weights[idx] += learning_rate * (*value - self.weights[idx]);
}
}
pub fn distance(&self, weights: &[f64]) -> f64 {
self.storage.distance(self.weights.as_slice(), weights)
}
pub fn new_hit(&mut self, time: usize) {
self.total_hits += 1;
if self.last_hits.get(0).map_or(true, |last_time| *last_time != time) {
self.last_hits.push_front(time);
self.last_hits.truncate(self.hit_memory_size);
}
}
pub fn get_last_hits(&self, current_time: usize) -> usize {
self.last_hits
.iter()
.filter(|&hit| {
if current_time > self.hit_memory_size {
(current_time - self.hit_memory_size) < *hit
} else {
true
}
})
.count()
}
}
impl<I: Input, S: Storage<Item = I>> Clone for Topology<I, S> {
fn clone(&self) -> Self {
Self {
dimension: self.dimension,
right: self.right.clone(),
left: self.left.clone(),
up: self.up.clone(),
down: self.down.clone(),
}
}
}
impl<I: Input, S: Storage<Item = I>> Topology<I, S> {
pub fn empty(dimension: usize) -> Self {
Self { dimension, right: None, left: None, up: None, down: None }
}
pub fn neighbours(&self) -> impl Iterator<Item = &NodeLink<I, S>> {
TopologyIterator { topology: self, state: 0 }
}
pub fn is_boundary(&self) -> bool {
self.right.is_none() || self.left.is_none() || self.up.is_none() || self.down.is_none()
}
}
struct TopologyIterator<'a, I: Input, S: Storage<Item = I>> {
topology: &'a Topology<I, S>,
state: usize,
}
impl<'a, I: Input, S: Storage<Item = I>> TopologyIterator<'a, I, S> {
fn transition(&mut self, state: usize, node: Option<&'a NodeLink<I, S>>) -> Result<(), Option<&'a NodeLink<I, S>>> {
if self.state == state {
self.state = state + 1;
if node.is_some() {
return Err(node);
}
}
Ok(())
}
fn iterate(&mut self) -> Result<(), Option<&'a NodeLink<I, S>>> {
self.transition(0, self.topology.left.as_ref())?;
self.transition(1, self.topology.right.as_ref())?;
self.transition(2, self.topology.down.as_ref())?;
self.transition(3, self.topology.up.as_ref())?;
Ok(())
}
}
impl<'a, I: Input, S: Storage<Item = I>> Iterator for TopologyIterator<'a, I, S> {
type Item = &'a NodeLink<I, S>;
fn next(&mut self) -> Option<Self::Item> {
if let Err(node) = self.iterate() {
node
} else {
None
}
}
}