1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use crate::algorithms::nsga2::Objective;
use crate::construction::constraints::*;
use crate::construction::heuristics::*;
use crate::construction::probing::repair_solution_from_unknown;
use crate::models::problem::Job;
use crate::models::Problem;
use crate::solver::mutation::Mutation;
use crate::solver::population::Elitism;
use crate::solver::RefinementContext;
use crate::utils::Random;
use std::cmp::Ordering;
use std::sync::Arc;
pub struct InfeasibleSearch {
inner_mutation: Arc<dyn Mutation + Send + Sync>,
repeat_count: usize,
shuffle_objectives_probability: (f64, f64),
skip_constraint_check_probability: (f64, f64),
}
impl InfeasibleSearch {
pub fn new(
inner_mutation: Arc<dyn Mutation + Send + Sync>,
repeat_count: usize,
shuffle_objectives_probability: (f64, f64),
skip_constraint_check_probability: (f64, f64),
) -> Self {
Self { inner_mutation, repeat_count, shuffle_objectives_probability, skip_constraint_check_probability }
}
}
impl Mutation for InfeasibleSearch {
fn mutate(&self, refinement_ctx: &RefinementContext, insertion_ctx: &InsertionContext) -> InsertionContext {
let new_insertion_ctx = create_relaxed_insertion_ctx(
insertion_ctx,
self.shuffle_objectives_probability,
self.skip_constraint_check_probability,
);
let mut new_refinement_ctx = create_relaxed_refinement_ctx(refinement_ctx, &new_insertion_ctx);
let repeat_count = refinement_ctx.environment.random.uniform_int(1, self.repeat_count as i32);
(0..repeat_count).fold(Some(new_insertion_ctx), |initial, _| {
let new_insertion_ctx = if let Some(initial) = initial {
self.inner_mutation.mutate(&new_refinement_ctx, &initial)
} else {
self.inner_mutation.mutate(&new_refinement_ctx, get_random_individual(&new_refinement_ctx))
};
new_refinement_ctx.population.add(new_insertion_ctx);
None
});
let new_insertion_ctx = get_best_or_random_individual(&new_refinement_ctx, insertion_ctx);
repair_solution_from_unknown(new_insertion_ctx, &|| {
InsertionContext::new(insertion_ctx.problem.clone(), insertion_ctx.environment.clone())
})
}
}
fn create_relaxed_refinement_ctx(
refinement_ctx: &RefinementContext,
new_insertion_ctx: &InsertionContext,
) -> RefinementContext {
let problem = new_insertion_ctx.problem.clone();
let environment = new_insertion_ctx.environment.clone();
let population = Box::new(Elitism::new(problem.clone(), environment.random.clone(), 4, 4));
RefinementContext {
problem,
population,
state: Default::default(),
quota: refinement_ctx.quota.clone(),
environment,
statistics: refinement_ctx.statistics.clone(),
}
}
fn create_relaxed_insertion_ctx(
insertion_ctx: &InsertionContext,
shuffle_objectives_probability: (f64, f64),
skip_constraint_check_probability: (f64, f64),
) -> InsertionContext {
let problem = &insertion_ctx.problem;
let random = &insertion_ctx.environment.random;
let shuffle_prob = random.uniform_real(shuffle_objectives_probability.0, shuffle_objectives_probability.1);
let skip_prob = random.uniform_real(skip_constraint_check_probability.0, skip_constraint_check_probability.1);
let constraint = if random.is_hit(skip_prob) {
Arc::new(create_modified_constraint(problem.constraint.as_ref(), random.clone(), skip_prob))
} else {
problem.constraint.clone()
};
let objective = if random.is_hit(shuffle_prob) {
Arc::new(problem.objective.shuffled(random.as_ref()))
} else {
problem.objective.clone()
};
let mut insertion_ctx = insertion_ctx.deep_copy();
insertion_ctx.problem = Arc::new(Problem {
fleet: problem.fleet.clone(),
jobs: problem.jobs.clone(),
locks: problem.locks.clone(),
constraint,
activity: problem.activity.clone(),
transport: problem.transport.clone(),
objective,
extras: problem.extras.clone(),
});
insertion_ctx
}
fn create_modified_constraint(
original: &ConstraintPipeline,
random: Arc<dyn Random + Send + Sync>,
skip_probability: f64,
) -> ConstraintPipeline {
let mut pipeline = ConstraintPipeline {
modules: original.modules.clone(),
state_keys: original.state_keys.clone(),
..ConstraintPipeline::default()
};
if random.is_head_not_tails() {
use_stochastic_rule(original, &mut pipeline, random, skip_probability);
} else {
use_permissive_rule(original, &mut pipeline, random);
}
pipeline
}
fn use_stochastic_rule(
original: &ConstraintPipeline,
modified: &mut ConstraintPipeline,
random: Arc<dyn Random + Send + Sync>,
skip_probability: f64,
) {
original.get_constraints().for_each(|constraint| {
let constraint: ConstraintVariant =
match constraint {
ConstraintVariant::HardRoute(c) => ConstraintVariant::HardRoute(Arc::new(
StochasticHardConstraint::new(Some(c), None, random.clone(), skip_probability),
)),
ConstraintVariant::HardActivity(c) => ConstraintVariant::HardActivity(Arc::new(
StochasticHardConstraint::new(None, Some(c), random.clone(), skip_probability),
)),
_ => constraint,
};
modified.add_constraint(&constraint);
});
}
fn use_permissive_rule(
original: &ConstraintPipeline,
modified: &mut ConstraintPipeline,
random: Arc<dyn Random + Send + Sync>,
) {
let constraints = original
.modules
.iter()
.map(|module| {
module
.get_constraints()
.map(|constraint| match &constraint {
ConstraintVariant::HardRoute(_) | ConstraintVariant::HardActivity(_) => (constraint, true),
_ => (constraint, false),
})
.collect::<Vec<_>>()
})
.filter(|constraints| !constraints.is_empty())
.collect::<Vec<_>>();
let indices = constraints
.iter()
.enumerate()
.filter(|(_, constraints)| constraints.iter().any(|(_, is_hard)| *is_hard))
.map(|(idx, _)| idx)
.collect::<Vec<_>>();
assert!(!indices.is_empty());
let skip_index = random.uniform_int(0, indices.len() as i32 - 1) as usize;
constraints
.iter()
.enumerate()
.filter(|(index, _)| *index != indices[skip_index])
.flat_map(|(_, constraints)| constraints.iter())
.for_each(|(constraint, _)| modified.add_constraint(constraint));
}
fn get_random_individual(new_refinement_ctx: &RefinementContext) -> &InsertionContext {
let size = new_refinement_ctx.population.size();
let skip = new_refinement_ctx.environment.random.uniform_int(0, size as i32 - 1) as usize;
new_refinement_ctx.population.select().nth(skip).expect("no individual")
}
fn get_best_or_random_individual<'a>(
new_refinement_ctx: &'a RefinementContext,
old_insertion_ctx: &InsertionContext,
) -> &'a InsertionContext {
let new_insertion_ctx = new_refinement_ctx.population.select().next().expect("no individual");
if new_refinement_ctx.problem.objective.total_order(new_insertion_ctx, old_insertion_ctx) == Ordering::Less {
new_insertion_ctx
} else {
get_random_individual(new_refinement_ctx)
}
}
struct StochasticHardConstraint {
hard_route_inner: Option<Arc<dyn HardRouteConstraint + Send + Sync>>,
hard_activity_inner: Option<Arc<dyn HardActivityConstraint + Send + Sync>>,
random: Arc<dyn Random + Send + Sync>,
probability: f64,
}
impl StochasticHardConstraint {
pub fn new(
hard_route_inner: Option<Arc<dyn HardRouteConstraint + Send + Sync>>,
hard_activity_inner: Option<Arc<dyn HardActivityConstraint + Send + Sync>>,
random: Arc<dyn Random + Send + Sync>,
probability: f64,
) -> Self {
Self { hard_route_inner, hard_activity_inner, random, probability }
}
}
impl HardRouteConstraint for StochasticHardConstraint {
fn evaluate_job(
&self,
solution_ctx: &SolutionContext,
ctx: &RouteContext,
job: &Job,
) -> Option<RouteConstraintViolation> {
if self.random.is_hit(self.probability) {
None
} else {
self.hard_route_inner.as_ref().unwrap().evaluate_job(solution_ctx, ctx, job)
}
}
}
impl HardActivityConstraint for StochasticHardConstraint {
fn evaluate_activity(
&self,
route_ctx: &RouteContext,
activity_ctx: &ActivityContext,
) -> Option<ActivityConstraintViolation> {
if self.random.is_hit(self.probability) {
None
} else {
self.hard_activity_inner.as_ref().unwrap().evaluate_activity(route_ctx, activity_ctx)
}
}
}