1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#[cfg(test)]
#[path = "../../../tests/unit/construction/constraints/pipeline_test.rs"]
mod pipeline_test;

use crate::construction::heuristics::{ActivityContext, RouteContext, SolutionContext};
use crate::models::common::Cost;
use crate::models::problem::{Job, TargetConstraint};
use hashbrown::HashSet;
use std::slice::Iter;
use std::sync::Arc;

/// Specifies hard constraint which operates on route level.
pub trait HardRouteConstraint {
    /// Estimates activity insertion in specific route.
    /// Returns violation error if constraint is violated.
    fn evaluate_job(
        &self,
        solution_ctx: &SolutionContext,
        ctx: &RouteContext,
        job: &Job,
    ) -> Option<RouteConstraintViolation>;
}

/// Specifies soft constraint which operates on route level.
pub trait SoftRouteConstraint {
    /// Estimates activity insertion in specific route.
    /// Returns non-zero penalty if constraint is violated: positive makes insertion less attractive,
    /// negative - more.
    fn estimate_job(&self, solution_ctx: &SolutionContext, route_ctx: &RouteContext, job: &Job) -> Cost;
}

/// Specifies hard constraint which operates on activity level.
pub trait HardActivityConstraint {
    /// Estimates activity insertion in specific route leg.
    /// Returns violation error if constraint is violated.
    fn evaluate_activity(
        &self,
        route_ctx: &RouteContext,
        activity_ctx: &ActivityContext,
    ) -> Option<ActivityConstraintViolation>;
}

/// Specifies soft constraint which operates on activity level.
pub trait SoftActivityConstraint {
    /// Estimates activity insertion in specific route leg.
    /// Returns non-zero penalty if constraint is violated: positive makes insertion less attractive,
    /// negative - more.
    fn estimate_activity(&self, route_ctx: &RouteContext, activity_ctx: &ActivityContext) -> Cost;
}

/// Specifies result of hard route constraint check.
#[derive(Clone, Debug)]
pub struct RouteConstraintViolation {
    /// Violation code which is used as marker of specific constraint violated.
    pub code: i32,
}

/// Specifies result of hard route constraint check.
#[derive(Clone, Debug)]
pub struct ActivityConstraintViolation {
    /// Violation code which is used as marker of specific constraint violated.
    pub code: i32,
    /// True if further insertions should not be attempted.
    pub stopped: bool,
}

/// A variant type for constraint types.
pub enum ConstraintVariant {
    /// Stores HardRoute variants.
    HardRoute(Arc<dyn HardRouteConstraint + Send + Sync>),
    /// Stores HardActivity variants.
    HardActivity(Arc<dyn HardActivityConstraint + Send + Sync>),
    /// Stores SoftRoute variants.
    SoftRoute(Arc<dyn SoftRouteConstraint + Send + Sync>),
    /// Stores SoftActivity variants.
    SoftActivity(Arc<dyn SoftActivityConstraint + Send + Sync>),
}

/// Represents a constraint module which can be added to constraint pipeline.
pub trait ConstraintModule {
    /// Accept insertion of specific job into the route.
    /// Called once job has been inserted into solution represented via `solution_ctx`.
    /// Target route is defined by `route_index` which refers to `routes` collection in solution context.
    /// Inserted job is `job`.
    /// This method should call `accept_route_state` internally.
    /// This method should NOT modify amount of job activities in the tour.
    fn accept_insertion(&self, solution_ctx: &mut SolutionContext, route_index: usize, job: &Job);

    /// Accept route and updates its state to allow more efficient constraint checks.
    /// This method should NOT modify amount of job activities in the tour.
    fn accept_route_state(&self, ctx: &mut RouteContext);

    /// Accepts insertion solution context allowing to update job insertion data.
    /// This method called twice: before insertion of all jobs starts and when it ends.
    /// Please note, that it is important to update only stale routes as this allows to avoid
    /// updating non changed route states.
    fn accept_solution_state(&self, ctx: &mut SolutionContext);

    /// Returns unique constraint state keys.
    /// Used to avoid state key interference.
    fn state_keys(&self) -> Iter<i32>;

    /// Returns list of constraints to be used.
    fn get_constraints(&self) -> Iter<ConstraintVariant>;
}

/// Provides the way to work with multiple constraints.
pub struct ConstraintPipeline {
    /// Pipeline modules.
    pub modules: Vec<Arc<dyn ConstraintModule + Send + Sync>>,
    /// Registered state keys.
    pub state_keys: HashSet<i32>,
    /// Hard route constraints.
    pub hard_route_constraints: Vec<Arc<dyn HardRouteConstraint + Send + Sync>>,
    /// Hard activity constraints.
    pub hard_activity_constraints: Vec<Arc<dyn HardActivityConstraint + Send + Sync>>,
    /// Soft route constraints.
    pub soft_route_constraints: Vec<Arc<dyn SoftRouteConstraint + Send + Sync>>,
    /// Soft activity constraints.
    pub soft_activity_constraints: Vec<Arc<dyn SoftActivityConstraint + Send + Sync>>,
}

impl Default for ConstraintPipeline {
    fn default() -> Self {
        ConstraintPipeline {
            modules: vec![],
            state_keys: Default::default(),
            hard_route_constraints: vec![],
            hard_activity_constraints: vec![],
            soft_route_constraints: vec![],
            soft_activity_constraints: vec![],
        }
    }
}

impl ConstraintPipeline {
    /// Accepts job insertion.
    pub fn accept_insertion(&self, solution_ctx: &mut SolutionContext, route_index: usize, job: &Job) {
        let activities = solution_ctx.routes.get_mut(route_index).unwrap().route.tour.activity_count();
        self.modules.iter().for_each(|c| c.accept_insertion(solution_ctx, route_index, job));
        assert_eq!(activities, solution_ctx.routes.get_mut(route_index).unwrap().route.tour.activity_count());

        solution_ctx.routes.get_mut(route_index).unwrap().mark_stale(false)
    }

    /// Accepts route state.
    pub fn accept_route_state(&self, route_ctx: &mut RouteContext) {
        if route_ctx.is_stale() {
            let activities = route_ctx.route.tour.activity_count();
            self.modules.iter().for_each(|c| c.accept_route_state(route_ctx));
            assert_eq!(activities, route_ctx.route.tour.activity_count());

            route_ctx.mark_stale(false);
        }
    }

    /// Accepts solution state.
    pub fn accept_solution_state(&self, solution_ctx: &mut SolutionContext) {
        let _ = (0..).try_fold((usize::MAX, usize::MAX), |(required, ignored), counter| {
            // NOTE if any job promotion occurs, then we might need to recalculate states.
            // As it is hard to maintain dependencies between different modules, we reset process to
            // beginning. However we do not expect recalculation to happen often, so this condition
            // here is to prevent infinite loops and signalize about error in pipeline configuration
            assert_ne!(counter, 100);

            if required != solution_ctx.required.len() || ignored != solution_ctx.ignored.len() {
                let required = solution_ctx.required.len();
                let ignored = solution_ctx.ignored.len();

                self.modules
                    .iter()
                    .try_for_each(|c| {
                        c.accept_solution_state(solution_ctx);
                        if required != solution_ctx.required.len() || ignored != solution_ctx.ignored.len() {
                            Err(())
                        } else {
                            Ok(())
                        }
                    })
                    .map(|_| (required, ignored))
                    .or(Ok((usize::MAX, usize::MAX)))
            } else {
                Err(())
            }
        });

        solution_ctx.routes.iter_mut().for_each(|route_ctx| {
            route_ctx.mark_stale(false);
        })
    }

    /// Adds constraint module.
    pub fn add_module(&mut self, module: TargetConstraint) -> &mut Self {
        module.state_keys().for_each(|key| {
            if let Some(duplicate) = self.state_keys.get(key) {
                panic!("Attempt to register constraint with key duplication: {}", duplicate)
            }
            self.state_keys.insert(*key);
        });

        module.get_constraints().for_each(|constraint| Self::add_constraint(self, constraint));

        self.modules.push(module);

        self
    }

    /// Adds constraint into pipeline.
    pub fn add_constraint(&mut self, constraint: &ConstraintVariant) {
        match constraint {
            ConstraintVariant::HardRoute(c) => self.hard_route_constraints.push(c.clone()),
            ConstraintVariant::HardActivity(c) => self.hard_activity_constraints.push(c.clone()),
            ConstraintVariant::SoftRoute(c) => self.soft_route_constraints.push(c.clone()),
            ConstraintVariant::SoftActivity(c) => self.soft_activity_constraints.push(c.clone()),
        }
    }

    /// Checks whether all hard route constraints are fulfilled.
    /// Returns result of first failed constraint or empty value.
    pub fn evaluate_hard_route(
        &self,
        solution_ctx: &SolutionContext,
        route_ctx: &RouteContext,
        job: &Job,
    ) -> Option<RouteConstraintViolation> {
        self.hard_route_constraints.iter().find_map(|c| c.evaluate_job(solution_ctx, route_ctx, job))
    }

    /// Checks whether all activity route constraints are fulfilled.
    /// Returns result of first failed constraint or empty value.
    pub fn evaluate_hard_activity(
        &self,
        route_ctx: &RouteContext,
        activity_ctx: &ActivityContext,
    ) -> Option<ActivityConstraintViolation> {
        self.hard_activity_constraints.iter().find_map(|c| c.evaluate_activity(route_ctx, activity_ctx))
    }

    /// Checks soft route constraints and aggregates associated actual and penalty costs.
    pub fn evaluate_soft_route(&self, solution_ctx: &SolutionContext, route_ctx: &RouteContext, job: &Job) -> Cost {
        self.soft_route_constraints.iter().map(|c| c.estimate_job(solution_ctx, route_ctx, job)).sum()
    }

    /// Checks soft route constraints and aggregates associated actual and penalty costs.
    pub fn evaluate_soft_activity(&self, route_ctx: &RouteContext, activity_ctx: &ActivityContext) -> Cost {
        self.soft_activity_constraints.iter().map(|c| c.estimate_activity(route_ctx, activity_ctx)).sum()
    }

    /// Gets all constraint variants as a single iterator.
    pub fn get_constraints(&self) -> impl Iterator<Item = ConstraintVariant> + '_ {
        self.hard_route_constraints
            .iter()
            .map(|c| ConstraintVariant::HardRoute(c.clone()))
            .chain(self.hard_activity_constraints.iter().map(|c| ConstraintVariant::HardActivity(c.clone())))
            .chain(self.soft_route_constraints.iter().map(|c| ConstraintVariant::SoftRoute(c.clone())))
            .chain(self.soft_activity_constraints.iter().map(|c| ConstraintVariant::SoftActivity(c.clone())))
    }
}

impl PartialEq<RouteConstraintViolation> for RouteConstraintViolation {
    fn eq(&self, other: &RouteConstraintViolation) -> bool {
        self.code == other.code
    }
}

impl Eq for RouteConstraintViolation {}

impl PartialEq<ActivityConstraintViolation> for ActivityConstraintViolation {
    fn eq(&self, other: &ActivityConstraintViolation) -> bool {
        self.code == other.code && self.stopped == other.stopped
    }
}

impl Eq for ActivityConstraintViolation {}