1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
use crate::utils::compare_floats;
use std::cmp::Ordering;
use std::cmp::Ordering::Equal;
pub fn get_cv(values: &[f64]) -> f64 {
let (variance, mean) = get_variance_mean(values);
if compare_floats(mean, 0.) == Equal {
return 0.;
}
let sdev = variance.sqrt();
sdev / mean
}
pub fn get_mean(values: &[f64]) -> f64 {
let sum: f64 = values.iter().sum();
sum / values.len() as f64
}
pub fn get_variance(values: &[f64]) -> f64 {
get_variance_mean(values).0
}
pub fn get_stdev(values: &[f64]) -> f64 {
get_variance_mean(values).0.sqrt()
}
fn get_variance_mean(values: &[f64]) -> (f64, f64) {
let mean = get_mean(values);
let (first, second) = values.iter().fold((0., 0.), |acc, v| {
let dev = v - mean;
(acc.0 + dev * dev, acc.1 + dev)
});
((first - (second * second / values.len() as f64)) / (values.len() as f64), mean)
}
pub fn relative_distance<A, B>(a: A, b: B) -> f64
where
A: Iterator<Item = f64>,
B: Iterator<Item = f64>,
{
a.zip(b)
.fold(0_f64, |acc, (a, b)| {
let divider = a.abs().max(b.abs());
let change = if compare_floats(divider, 0.) == Ordering::Equal { 0. } else { (a - b) / divider };
acc + change * change
})
.sqrt()
}