1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#[cfg(test)]
#[path = "../../../tests/unit/models/problem/costs_test.rs"]
mod costs_test;
use crate::algorithms::nsga2::{dominance_order, MultiObjective, Objective};
use crate::construction::heuristics::InsertionContext;
use crate::models::common::*;
use crate::models::problem::{Actor, TargetObjective};
use crate::models::solution::Activity;
use crate::solver::objectives::{TotalCost, TotalRoutes, TotalUnassignedJobs};
use crate::utils::{unwrap_from_result, CollectGroupBy};
use hashbrown::HashMap;
use std::cmp::Ordering;
use std::sync::Arc;
pub struct ObjectiveCost {
    objectives: Vec<Vec<TargetObjective>>,
}
impl ObjectiveCost {
    
    pub fn new(objectives: Vec<Vec<TargetObjective>>) -> Self {
        Self { objectives }
    }
}
impl Objective for ObjectiveCost {
    type Solution = InsertionContext;
    fn total_order(&self, a: &Self::Solution, b: &Self::Solution) -> Ordering {
        unwrap_from_result(self.objectives.iter().try_fold(Ordering::Equal, |_, objectives| {
            match dominance_order(a, b, objectives) {
                Ordering::Equal => Ok(Ordering::Equal),
                order => Err(order),
            }
        }))
    }
    fn distance(&self, _a: &Self::Solution, _b: &Self::Solution) -> f64 {
        unreachable!()
    }
    fn fitness(&self, solution: &Self::Solution) -> f64 {
        solution.solution.get_total_cost()
    }
}
impl MultiObjective for ObjectiveCost {
    fn objectives<'a>(&'a self) -> Box<dyn Iterator<Item = &TargetObjective> + 'a> {
        Box::new(self.objectives.iter().flatten())
    }
}
impl Default for ObjectiveCost {
    fn default() -> Self {
        Self::new(vec![
            vec![Box::new(TotalUnassignedJobs::default())],
            vec![Box::new(TotalRoutes::default())],
            vec![TotalCost::minimize()],
        ])
    }
}
pub trait ActivityCost {
    
    fn cost(&self, actor: &Actor, activity: &Activity, arrival: Timestamp) -> Cost {
        let waiting = if activity.place.time.start > arrival { activity.place.time.start - arrival } else { 0. };
        let service = activity.place.duration;
        waiting * (actor.driver.costs.per_waiting_time + actor.vehicle.costs.per_waiting_time)
            + service * (actor.driver.costs.per_service_time + actor.vehicle.costs.per_service_time)
    }
}
pub struct SimpleActivityCost {}
impl Default for SimpleActivityCost {
    fn default() -> Self {
        Self {}
    }
}
impl ActivityCost for SimpleActivityCost {}
pub trait TransportCost {
    
    fn cost(&self, actor: &Actor, from: Location, to: Location, departure: Timestamp) -> Cost {
        let distance = self.distance(&actor.vehicle.profile, from, to, departure);
        let duration = self.duration(&actor.vehicle.profile, from, to, departure);
        distance * (actor.driver.costs.per_distance + actor.vehicle.costs.per_distance)
            + duration * (actor.driver.costs.per_driving_time + actor.vehicle.costs.per_driving_time)
    }
    
    fn duration(&self, profile: &Profile, from: Location, to: Location, departure: Timestamp) -> Duration;
    
    fn distance(&self, profile: &Profile, from: Location, to: Location, departure: Timestamp) -> Distance;
}
pub struct MatrixData {
    
    pub index: usize,
    
    pub timestamp: Option<Timestamp>,
    
    pub durations: Vec<Duration>,
    
    pub distances: Vec<Distance>,
}
impl MatrixData {
    
    pub fn new(index: usize, timestamp: Option<Timestamp>, durations: Vec<Duration>, distances: Vec<Distance>) -> Self {
        Self { index, timestamp, durations, distances }
    }
}
pub fn create_matrix_transport_cost(costs: Vec<MatrixData>) -> Result<Arc<dyn TransportCost + Send + Sync>, String> {
    if costs.is_empty() {
        return Err("no matrix data found".to_string());
    }
    let size = (costs.first().unwrap().durations.len() as f64).sqrt().round() as usize;
    if costs.iter().any(|matrix| matrix.distances.len() != matrix.durations.len()) {
        return Err("distance and duration collections have different length".to_string());
    }
    if costs.iter().any(|matrix| (matrix.distances.len() as f64).sqrt().round() as usize != size) {
        return Err("distance lengths don't match".to_string());
    }
    if costs.iter().any(|matrix| (matrix.durations.len() as f64).sqrt().round() as usize != size) {
        return Err("duration lengths don't match".to_string());
    }
    Ok(if costs.iter().any(|costs| costs.timestamp.is_some()) {
        Arc::new(TimeAwareMatrixTransportCost::new(costs, size)?)
    } else {
        Arc::new(TimeAgnosticMatrixTransportCost::new(costs, size)?)
    })
}
struct TimeAgnosticMatrixTransportCost {
    durations: Vec<Vec<Duration>>,
    distances: Vec<Vec<Distance>>,
    size: usize,
}
impl TimeAgnosticMatrixTransportCost {
    
    pub fn new(costs: Vec<MatrixData>, size: usize) -> Result<Self, String> {
        let mut costs = costs;
        costs.sort_by(|a, b| a.index.cmp(&b.index));
        if costs.iter().any(|costs| costs.timestamp.is_some()) {
            return Err("time aware routing".to_string());
        }
        if (0..).zip(costs.iter().map(|c| &c.index)).any(|(a, &b)| a != b) {
            return Err("duplicate profiles can be passed only for time aware routing".to_string());
        }
        let (durations, distances) = costs.into_iter().fold((vec![], vec![]), |mut acc, data| {
            acc.0.push(data.durations);
            acc.1.push(data.distances);
            acc
        });
        Ok(Self { durations, distances, size })
    }
}
impl TransportCost for TimeAgnosticMatrixTransportCost {
    fn duration(&self, profile: &Profile, from: Location, to: Location, _: Timestamp) -> Duration {
        *self.durations.get(profile.index).unwrap().get(from * self.size + to).unwrap() * profile.scale
    }
    fn distance(&self, profile: &Profile, from: Location, to: Location, _: Timestamp) -> Distance {
        *self.distances.get(profile.index).unwrap().get(from * self.size + to).unwrap()
    }
}
struct TimeAwareMatrixTransportCost {
    costs: HashMap<usize, (Vec<u64>, Vec<MatrixData>)>,
    size: usize,
}
impl TimeAwareMatrixTransportCost {
    
    fn new(costs: Vec<MatrixData>, size: usize) -> Result<Self, String> {
        if costs.iter().any(|matrix| matrix.timestamp.is_none()) {
            return Err("time-aware routing requires all matrices to have timestamp".to_string());
        }
        let costs = costs.into_iter().collect_group_by_key(|matrix| matrix.index);
        if costs.iter().any(|(_, matrices)| matrices.len() == 1) {
            return Err("should not use time aware matrix routing with single matrix".to_string());
        }
        let costs = costs
            .into_iter()
            .map(|(profile, mut matrices)| {
                matrices.sort_by(|a, b| (a.timestamp.unwrap() as u64).cmp(&(b.timestamp.unwrap() as u64)));
                let timestamps = matrices.iter().map(|matrix| matrix.timestamp.unwrap() as u64).collect();
                (profile, (timestamps, matrices))
            })
            .collect();
        Ok(Self { costs, size })
    }
}
impl TransportCost for TimeAwareMatrixTransportCost {
    fn duration(&self, profile: &Profile, from: Location, to: Location, timestamp: Timestamp) -> Duration {
        let (timestamps, matrices) = self.costs.get(&profile.index).unwrap();
        let data_idx = from * self.size + to;
        profile.scale
            * match timestamps.binary_search(&(timestamp as u64)) {
                Ok(matrix_idx) => *matrices.get(matrix_idx).unwrap().durations.get(data_idx).unwrap(),
                Err(matrix_idx) if matrix_idx == 0 => *matrices.first().unwrap().durations.get(data_idx).unwrap(),
                Err(matrix_idx) if matrix_idx == matrices.len() => {
                    *matrices.last().unwrap().durations.get(data_idx).unwrap()
                }
                Err(matrix_idx) => {
                    let left_matrix = matrices.get(matrix_idx - 1).unwrap();
                    let right_matrix = matrices.get(matrix_idx).unwrap();
                    let left_value = *matrices.get(matrix_idx - 1).unwrap().durations.get(data_idx).unwrap();
                    let right_value = *matrices.get(matrix_idx).unwrap().durations.get(data_idx).unwrap();
                    
                    let ratio = (timestamp - left_matrix.timestamp.unwrap())
                        / (right_matrix.timestamp.unwrap() - left_matrix.timestamp.unwrap());
                    left_value + ratio * (right_value - left_value)
                }
            }
    }
    fn distance(&self, profile: &Profile, from: Location, to: Location, timestamp: Timestamp) -> Distance {
        let (timestamps, matrices) = self.costs.get(&profile.index).unwrap();
        let data_idx = from * self.size + to;
        match timestamps.binary_search(&(timestamp as u64)) {
            Ok(matrix_idx) => *matrices.get(matrix_idx).unwrap().distances.get(data_idx).unwrap(),
            Err(matrix_idx) if matrix_idx == 0 => *matrices.first().unwrap().distances.get(data_idx).unwrap(),
            Err(matrix_idx) if matrix_idx == matrices.len() => {
                *matrices.last().unwrap().distances.get(data_idx).unwrap()
            }
            Err(matrix_idx) => *matrices.get(matrix_idx - 1).unwrap().distances.get(data_idx).unwrap(),
        }
    }
}