1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#[cfg(test)]
#[path = "../../../../tests/unit/solver/mutation/ruin/cluster_removal_test.rs"]
mod cluster_removal_test;
use super::*;
use crate::algorithms::dbscan::{create_clusters, Cluster, NeighborhoodFn};
use crate::algorithms::geometry::Point;
use crate::construction::heuristics::InsertionContext;
use crate::models::common::Timestamp;
use crate::models::problem::Job;
use crate::models::Problem;
use crate::solver::mutation::get_route_jobs;
use crate::solver::RefinementContext;
use crate::utils::{compare_floats, Environment, Random};
use rand::prelude::*;
use std::sync::Arc;
pub struct ClusterRemoval {
clusters: Vec<Vec<Job>>,
limits: RuinLimits,
}
impl ClusterRemoval {
pub fn new(problem: Arc<Problem>, environment: Arc<Environment>, min_items: usize, limits: RuinLimits) -> Self {
let min_items = min_items.max(3);
let epsilon = estimate_epsilon(&problem, min_items);
let mut clusters = create_job_clusters(&problem, environment.random.as_ref(), min_items, epsilon)
.into_iter()
.map(|cluster| cluster.into_iter().cloned().collect::<Vec<_>>())
.collect::<Vec<_>>();
clusters.shuffle(&mut environment.random.get_rng());
Self { clusters, limits }
}
pub fn new_with_defaults(problem: Arc<Problem>, environment: Arc<Environment>) -> Self {
Self::new(problem, environment, 4, RuinLimits::default())
}
}
impl Ruin for ClusterRemoval {
fn run(&self, _: &RefinementContext, mut insertion_ctx: InsertionContext) -> InsertionContext {
let locked = insertion_ctx.solution.locked.clone();
let mut route_jobs = get_route_jobs(&insertion_ctx.solution);
let max_affected = self.limits.get_chunk_size(&insertion_ctx);
let tracker = self.limits.get_tracker();
let mut indices = (0..self.clusters.len()).into_iter().collect::<Vec<usize>>();
indices.shuffle(&mut insertion_ctx.environment.random.get_rng());
indices.into_iter().take_while(|_| tracker.is_not_limit(max_affected)).for_each(|idx| {
let cluster = self.clusters.get(idx).unwrap();
let left = max_affected - tracker.removed_jobs.read().unwrap().len();
cluster
.iter()
.filter(|job| !locked.contains(job))
.take_while(|_| tracker.is_not_limit(max_affected))
.take(left)
.for_each(|job| {
if let Some(rc) = route_jobs.get_mut(job) {
if rc.route.tour.contains(job) {
rc.route_mut().tour.remove(job);
tracker.add_actor(rc.route.actor.clone());
tracker.add_job((*job).clone());
}
}
});
});
tracker.removed_jobs.write().unwrap().iter().for_each(|job| insertion_ctx.solution.required.push(job.clone()));
insertion_ctx
}
}
fn create_job_clusters<'a>(
problem: &'a Problem,
random: &(dyn Random + Send + Sync),
min_items: usize,
epsilon: f64,
) -> Vec<Cluster<'a, Job>> {
let profile = &problem.fleet.profiles[random.uniform_int(0, problem.fleet.profiles.len() as i32 - 1) as usize];
let neighbor_fn: NeighborhoodFn<'a, Job> = Box::new(move |job, eps| {
Box::new(once(job).chain(
problem.jobs.neighbors(profile, job, 0.).take_while(move |(_, cost)| *cost < eps).map(|(job, _)| job),
))
});
create_clusters(problem.jobs.all_as_slice(), epsilon, min_items, &neighbor_fn)
}
fn estimate_epsilon(problem: &Problem, min_points: usize) -> f64 {
let mut costs = get_average_costs(problem, min_points);
costs.sort_by(|&a, &b| compare_floats(a, b));
let curve = costs.into_iter().enumerate().map(|(idx, cost)| Point::new(idx as f64, cost)).collect::<Vec<_>>();
get_max_curvature(curve.as_slice())
}
fn get_average_costs(problem: &Problem, min_points: usize) -> Vec<f64> {
let mut costs = problem.fleet.profiles.iter().fold(vec![0.; problem.jobs.size()], |mut acc, profile| {
problem.jobs.all().enumerate().for_each(|(idx, job)| {
acc[idx] += problem
.jobs
.neighbors(profile, &job, Timestamp::default())
.filter(|(_, cost)| *cost > 0.)
.nth(min_points - 1)
.map(|(_, cost)| *cost)
.unwrap_or(0.);
});
acc
});
costs.iter_mut().for_each(|cost| *cost /= problem.fleet.profiles.len() as f64);
costs
}
fn get_max_curvature(values: &[Point]) -> f64 {
if values.is_empty() {
return 0.;
}
let first = values.first().unwrap();
let last = values.last().unwrap();
values
.iter()
.fold((0., f64::MIN), |acc, p| {
let distance = p.distance_to_line(&first, &last);
if distance > acc.1 {
(p.y, distance)
} else {
acc
}
})
.0
}