1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use super::*;
use crate::algorithms::nsga2::Objective;
use crate::construction::heuristics::InsertionContext;
use crate::models::common::SingleDimLoad;
use crate::models::Problem;
use crate::solver::mutation::*;
use crate::solver::population::{Individual, SelectionPhase};
use crate::solver::RefinementContext;
use crate::utils::{parallel_into_collect, unwrap_from_result, Environment};
use std::cmp::Ordering;
use std::sync::Arc;
pub type MutationProbability = Box<dyn Fn(&RefinementContext, &InsertionContext) -> bool + Send + Sync>;
pub type MutationGroup = Vec<(Arc<dyn Mutation + Send + Sync>, MutationProbability)>;
pub struct StaticSelective {
mutation_group: MutationGroup,
}
impl HyperHeuristic for StaticSelective {
fn search(&mut self, refinement_ctx: &RefinementContext, individuals: Vec<&Individual>) -> Vec<Individual> {
parallel_into_collect(individuals.iter().enumerate().collect(), |(idx, insertion_ctx)| {
refinement_ctx
.environment
.parallelism
.thread_pool_execute(idx, || self.mutate(refinement_ctx, insertion_ctx))
})
}
}
impl StaticSelective {
pub fn new(mutation_group: MutationGroup) -> Self {
Self { mutation_group }
}
pub fn new_with_defaults(problem: Arc<Problem>, environment: Arc<Environment>) -> Self {
let default_mutation = Self::create_default_mutation(problem, environment.clone());
let local_search = Arc::new(LocalSearch::new(Arc::new(CompositeLocalOperator::new(
vec![
(Arc::new(ExchangeInterRouteBest::default()), 100),
(Arc::new(ExchangeInterRouteRandom::default()), 30),
(Arc::new(ExchangeIntraRouteRandom::default()), 30),
(Arc::new(RescheduleDeparture::default()), 20),
],
1,
2,
))));
Self::new(vec![
(
Arc::new(DecomposeSearch::new(default_mutation.clone(), (2, 8), 4)),
create_context_mutation_probability(
300,
10,
vec![(SelectionPhase::Exploration, 0.05), (SelectionPhase::Exploitation, 0.05)],
environment.random.clone(),
),
),
(local_search.clone(), create_scalar_mutation_probability(0.05, environment.random.clone())),
(default_mutation, create_scalar_mutation_probability(1., environment.random.clone())),
(local_search, create_scalar_mutation_probability(0.05, environment.random.clone())),
])
}
fn mutate(&self, refinement_ctx: &RefinementContext, insertion_ctx: &InsertionContext) -> InsertionContext {
unwrap_from_result(
self.mutation_group.iter().filter(|(_, probability)| probability(refinement_ctx, insertion_ctx)).try_fold(
insertion_ctx.deep_copy(),
|ctx, (mutation, _)| {
let new_insertion_ctx = mutation.mutate(refinement_ctx, &ctx);
if refinement_ctx.problem.objective.total_order(&insertion_ctx, &new_insertion_ctx)
== Ordering::Greater
{
Err(new_insertion_ctx)
} else {
Ok(new_insertion_ctx)
}
},
),
)
}
pub fn create_default_mutation(
problem: Arc<Problem>,
environment: Arc<Environment>,
) -> Arc<dyn Mutation + Send + Sync> {
let recreate = Arc::new(WeightedRecreate::new(vec![
(Arc::new(RecreateWithSkipBest::new(1, 2)), 50),
(Arc::new(RecreateWithRegret::new(2, 3)), 20),
(Arc::new(RecreateWithCheapest::default()), 20),
(Arc::new(RecreateWithPerturbation::new_with_defaults(environment.random.clone())), 10),
(Arc::new(RecreateWithSkipBest::new(3, 4)), 5),
(Arc::new(RecreateWithGaps::default()), 5),
(Arc::new(RecreateWithBlinks::<SingleDimLoad>::new_with_defaults(environment.random.clone())), 5),
(Arc::new(RecreateWithFarthest::default()), 2),
(Arc::new(RecreateWithSkipBest::new(4, 8)), 2),
(Arc::new(RecreateWithNearestNeighbor::default()), 1),
(
Arc::new(RecreateWithSkipRandom::default_explorative_phased(Arc::new(RecreateWithCheapest::default()))),
1,
),
]));
let close_route = Arc::new(CloseRouteRemoval::default());
let random_route = Arc::new(RandomRouteRemoval::default());
let random_job = Arc::new(RandomJobRemoval::new(RuinLimits::default()));
let random_ruin = Self::create_default_random_ruin();
let ruin = Arc::new(WeightedRuin::new(vec![
(vec![(Arc::new(AdjustedStringRemoval::default()), 1.), (random_ruin.clone(), 0.1)], 100),
(vec![(Arc::new(NeighbourRemoval::default()), 1.), (random_ruin.clone(), 0.1)], 10),
(vec![(Arc::new(WorstJobRemoval::default()), 1.), (random_ruin.clone(), 0.1)], 10),
(vec![(Arc::new(ClusterRemoval::new_with_defaults(problem, environment)), 1.), (random_ruin, 0.1)], 5),
(vec![(close_route, 1.), (random_job.clone(), 0.1)], 2),
(vec![(random_route, 1.), (random_job, 0.1)], 1),
]));
Arc::new(RuinAndRecreate::new(ruin, recreate))
}
pub fn create_default_random_ruin() -> Arc<dyn Ruin + Send + Sync> {
Arc::new(WeightedRuin::new(vec![
(vec![(Arc::new(CloseRouteRemoval::default()), 1.)], 100),
(vec![(Arc::new(RandomRouteRemoval::default()), 1.)], 10),
(vec![(Arc::new(RandomJobRemoval::new(RuinLimits::default())), 1.)], 2),
]))
}
}
pub fn create_scalar_mutation_probability(
scalar_probability: f64,
random: Arc<dyn Random + Send + Sync>,
) -> MutationProbability {
Box::new(move |_, _| random.is_hit(scalar_probability))
}
pub fn create_context_mutation_probability(
jobs_threshold: usize,
routes_threshold: usize,
phases: Vec<(SelectionPhase, f64)>,
random: Arc<dyn Random + Send + Sync>,
) -> MutationProbability {
let phases = phases.into_iter().collect::<HashMap<_, _>>();
Box::new(move |refinement_ctx, insertion_ctx| {
let below_thresholds = insertion_ctx.problem.jobs.size() < jobs_threshold
|| insertion_ctx.solution.routes.len() < routes_threshold;
if below_thresholds {
return false;
}
let phase_probability = phases.get(&refinement_ctx.population.selection_phase()).cloned().unwrap_or(0.);
random.is_hit(phase_probability)
})
}