1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#[cfg(test)]
#[path = "../../../tests/unit/solver/population/population_test.rs"]
mod population_test;
use crate::models::common::Objective;
use crate::models::Problem;
use crate::solver::{Individual, Population};
use crate::utils::{compare_floats, Random};
use std::cmp::Ordering::Equal;
use std::sync::Arc;
mod crowding_distance;
use self::crowding_distance::*;
mod non_dominated_sort;
use self::non_dominated_sort::*;
mod nsga2;
use self::nsga2::select_and_rank;
use hashbrown::HashSet;
pub struct DominancePopulation {
problem: Arc<Problem>,
random: Arc<dyn Random + Send + Sync>,
individuals: Vec<Individual>,
weights: Vec<usize>,
offspring_size: usize,
population_size: usize,
}
impl DominancePopulation {
pub fn new(
problem: Arc<Problem>,
random: Arc<dyn Random + Send + Sync>,
population_size: usize,
offspring_size: usize,
elite_size: usize,
) -> Self {
assert!(elite_size < population_size);
let max_size = population_size + offspring_size;
Self {
problem,
random,
individuals: vec![],
weights: (0..max_size)
.map(|idx| {
let weight = max_size - idx;
weight + if idx < elite_size { weight } else { 0 }
})
.collect(),
population_size,
offspring_size,
}
}
}
impl Population for DominancePopulation {
fn add(&mut self, individual: Individual) {
self.individuals.push(individual);
let max_size = self.population_size + self.offspring_size;
let mut best_order =
select_and_rank(self.individuals.as_slice(), self.individuals.len(), self.problem.objective.as_ref())
.iter()
.enumerate()
.map(|(idx, acd)| {
(
idx,
acd.index,
acd.crowding_distance,
self.problem.objective.fitness(self.individuals.get(acd.index).unwrap()),
)
})
.collect::<Vec<_>>();
(0..self.individuals.len()).for_each(|i| loop {
let (_, j, _, _) = best_order[i];
let (_, k, _, _) = best_order[j];
if i == j {
break;
}
self.individuals.swap(j, k);
best_order.swap(i, j);
});
best_order.sort_by(|a, b| a.0.cmp(&b.0));
best_order.dedup_by(|(_, _, a_cd, a_cost), (_, _, b_cd, b_cost)| {
compare_floats(*a_cd, *b_cd) == Equal && compare_floats(*a_cost, *b_cost) == Equal
});
let indices = best_order.iter().map(|i| i.0).collect::<HashSet<_>>();
let mut idx = 0_usize;
self.individuals.retain(|_| {
idx += 1;
indices.contains(&(idx - 1))
});
if self.individuals.len() > max_size {
self.individuals.truncate(self.population_size);
}
}
fn all<'a>(&'a self) -> Box<dyn Iterator<Item = &Individual> + 'a> {
Box::new(self.individuals.iter())
}
fn best(&self) -> Option<&Individual> {
self.individuals.first()
}
fn select(&self) -> &Individual {
let idx = self.random.weighted(&self.weights[0..self.individuals.len()]);
self.individuals.get(idx).unwrap()
}
fn size(&self) -> usize {
self.individuals.len()
}
}