1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright (C) 2021 Thomas Mulvaney.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

//! Various data structures for dealing with space and geometry.

/// A point in real space
pub type Point = [f64; 3];

/// A vector in real space
pub type Vector = [f64; 3];

/// A coordinate in the voxel map
pub type Coord = [usize; 3];

/// TODO make Point, Vector and Coord concrete types so we
/// dont need to do this by making traits!
pub trait Distance {
    fn vector_to(&self, other: &Self) -> Vector;
    fn dist2(&self, other: &Self) -> f64;
    fn dist(&self, other: &Self) -> f64;
}

impl Distance for Point {
    /// Return a vector from this point to another point
    ///
    /// # Arguments
    /// * `other` - the point to calculate the vector to.
    ///
    /// # Examples
    /// ```
    /// use voxcov::geom::{Point, Distance};
    /// let a: Point = [1.0, 1.0, 1.0];
    /// let b: Point = [3.0, 4.0, 5.0];
    /// assert!(a.vector_to(&b) == [2.0, 3.0, 4.0]);
    /// ```
    #[inline]
    fn vector_to(&self, other: &Point) -> Vector {
        [other[0] - self[0], other[1] - self[1], other[2] - self[2]]
    }

    #[inline]
    fn dist2(&self, point: &Point) -> f64 {
        let v = self.vector_to(point);
        (v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2])
    }

    #[inline]
    fn dist(&self, point: &Point) -> f64 {
        f64::sqrt(self.dist2(point))
    }
}

/// Transform points from Voxel space (i, j, k) to real space (x, y, z)
#[derive(Clone, Debug)]
pub struct Transform {
    pub origin: Point,
    pub scale: Vector,
}

impl Transform {
    pub fn to_real(&self, coord: &Coord) -> Point {
        let x = (coord[0] as f64 * self.scale[0]) + self.origin[0];
        let y = (coord[1] as f64 * self.scale[1]) + self.origin[1];
        let z = (coord[2] as f64 * self.scale[2]) + self.origin[2];
        [x, y, z]
    }

    pub fn to_voxel(&self, point: &Point) -> Coord {
        let x = (point[0] - self.origin[0]) / self.scale[0];
        let y = (point[1] - self.origin[1]) / self.scale[1];
        let z = (point[2] - self.origin[2]) / self.scale[2];
        [x.round() as usize, y.round() as usize, z.round() as usize]
    }
    pub fn to_lower_voxel(&self, point: &Point) -> Coord {
        let x = (point[0] - self.origin[0]) / self.scale[0];
        let y = (point[1] - self.origin[1]) / self.scale[1];
        let z = (point[2] - self.origin[2]) / self.scale[2];
        [x.floor() as usize, y.floor() as usize, z.floor() as usize]
    }

    pub fn to_upper_voxel(&self, point: &Point) -> Coord {
        let x = (point[0] - self.origin[0]) / self.scale[0];
        let y = (point[1] - self.origin[1]) / self.scale[1];
        let z = (point[2] - self.origin[2]) / self.scale[2];
        [x.ceil() as usize, y.ceil() as usize, z.ceil() as usize]
    }
}

/// An axis aligned bounding box (AABB).
#[derive(Debug)]
pub struct BoundingBox {
    pub lower: Point,
    pub upper: Point,
}

impl BoundingBox {
    fn nearest(&self, v: f64, lower: f64, upper: f64) -> f64 {
        // TODO maybe we should just have lower and width to define the box.
        let center = lower + ((upper - lower) / 2.0);
        if v <= center {
            lower
        } else {
            upper
        }
    }

    fn farthest(&self, v: f64, lower: f64, upper: f64) -> f64 {
        // TODO maybe we should just have lower and width to define the box.
        let center = lower + ((upper - lower) / 2.0);
        if v > center {
            lower
        } else {
            upper
        }
    }

    /// Given a point, return the nearest corner of the box.
    ///
    /// # Arguments
    /// * `point` - The point to the find the closest corner to
    ///
    /// # Examples
    /// ```
    /// use voxcov::geom::{BoundingBox, Point};
    /// let aabb = BoundingBox { lower: [0.0; 3], upper: [10.0; 3] };
    ///
    /// // A point inside the box
    /// let p: Point = [1.0, 9.0, 1.0];
    /// assert_eq!(aabb.nearest_corner(&p), [0.0, 10.0, 0.0]);
    ///
    /// // A point outside the box
    /// let p: Point = [0.0, -9.0, 0.0];
    /// assert_eq!(aabb.nearest_corner(&p), [0.0, 0.0, 0.0]);
    ///
    /// // Another point outside the box
    /// let p: Point = [11.0, 19.0, 2.0];
    /// assert_eq!(aabb.nearest_corner(&p), [10.0, 10.0, 0.0]);
    /// ```
    pub fn nearest_corner(&self, point: &Point) -> Point {
        [
            self.nearest(point[0], self.lower[0], self.upper[0]),
            self.nearest(point[1], self.lower[1], self.upper[1]),
            self.nearest(point[2], self.lower[2], self.upper[2]),
        ]
    }

    /// Given a point, return the farthest corner of the box.
    ///
    /// # Arguments
    /// * `point` - The point to the find the closest corner to
    ///
    /// # Examples
    /// ```
    /// use voxcov::geom::{BoundingBox, Point};
    /// let aabb = BoundingBox { lower: [0.0; 3], upper: [10.0; 3] };
    /// let p: Point = [1.0, 9.0, 1.0];
    /// assert_eq!(aabb.farthest_corner(&p), [10.0, 0.0, 10.0]);
    ///
    /// // A point outside the box
    /// let p: Point = [0.0, -9.0, 0.0];
    /// assert_eq!(aabb.farthest_corner(&p), [10.0, 10.0, 10.0]);
    ///
    /// // Another point outside the box
    /// let p: Point = [11.0, 19.0, 2.0];
    /// assert_eq!(aabb.farthest_corner(&p), [0.0, 0.0, 10.0]);
    /// ```
    pub fn farthest_corner(&self, point: &Point) -> Point {
        [
            self.farthest(point[0], self.lower[0], self.upper[0]),
            self.farthest(point[1], self.lower[1], self.upper[1]),
            self.farthest(point[2], self.lower[2], self.upper[2]),
        ]
    }
}

pub struct Sphere {
    pub point: Point,
    pub radius: f64,
}

impl Sphere {
    /// Create a sphere.
    ///
    /// # Arguments
    ///
    /// * `point` - The center of the sphere.
    /// * `radius` - The radius of the sphere.
    pub fn new(point: Point, radius: f64) -> Sphere {
        Sphere { point, radius }
    }

    pub fn bounding_box(&self) -> BoundingBox {
        let radius = self.radius;
        let point = self.point;
        let lower = [point[0] - radius, point[1] - radius, point[2] - radius];
        let upper = [point[0] + radius, point[1] + radius, point[2] + radius];
        BoundingBox { lower, upper }
    }
}