vortex_file/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#![doc(html_logo_url = "/vortex/docs/_static/vortex_spiral_logo.svg")]
//! Read and write Vortex layouts, a serialization of Vortex arrays.
//!
//! A layout is a serialized array which is stored in some linear and contiguous block of
//! memory. Layouts are recursively defined in terms of one of three kinds:
//!
//! 1. The [flat layout][layouts::FlatLayout]. A contiguously serialized array using the [Vortex
//!    flatbuffer Batch message][vortex_flatbuffers::message].
//!
//! 2. The [columnar layout][layouts::ColumnarLayout]. Each column of a
//!    [StructArray][vortex_array::array::StructArray] is sequentially laid out at known
//!    offsets. This permits reading a subset of columns in time linear in the number of kept
//!    columns.
//!
//! 3. The [chunked layout][layouts::ChunkedLayout]. Each chunk of a
//!    [ChunkedArray][vortex_array::array::ChunkedArray] is sequentially laid out at known
//!    offsets. This permits reading a subset of rows in time linear in the number of kept rows.
//!
//! A layout, alone, is _not_ a standalone Vortex file because layouts are not self-describing. They
//! neither contain a description of the kind of layout (e.g. flat, column of flat, chunked of
//! column of flat) nor a [data type][vortex_dtype::DType]. A standalone Vortex file comprises seven
//! sections, the first of which is the serialized array bytes. The interpretation of those bytes,
//! i.e. which particular layout was used, is given in the fourth section: the footer.
//!
//! <table>
//! <thead>
//! <tr>
//! <th>Section</th>
//! <th>Size</th>
//! <th>Description</th>
//! </tr>
//! </thead>
//! <tr>
//! <td>
//! Data
//! </td>
//! <td>
//! In the Footer.
//! </td>
//! <td>
//! The serialized arrays.
//! </td>
//! </tr><tr>
//! <td>
//! Metadata
//! </td>
//! <td>
//! In the Footer.
//! </td>
//! <td>
//! A table per column with a row per chunk. Contains statistics.
//! </td>
//! </tr><tr>
//! <td>
//! Schema
//! </td>
//! <td>
//! In the Postscript.
//! </td>
//! <td>
//! A serialized data type.
//! </td>
//! </tr><tr>
//! <td>
//! Footer
//! </td>
//! <td>
//! In the Postscript.
//! </td>
//! <td>
//! A recursive description of the layout including the number of rows.
//! </td>
//! </tr><tr>
//! <td>
//! Postscript
//! </td>
//! <td>
//! 32 bytes
//! </td>
//! <td>
//! Two 64-bit offsets pointing at schema and the footer.
//! </td>
//! </tr><tr>
//! <td>
//! Version
//! </td>
//! <td>
//! 4 bytes
//! </td>
//! <td>
//! The file format version.
//! </td>
//! </tr><tr>
//! <td>
//! Magic bytes
//! </td>
//! <td>
//! 4 bytes
//! </td>
//! <td>
//! The ASCII bytes "VRTX" (86, 82, 84, 88; 0x56525458).
//! </td>
//! </tr>
//! </table>
//!
//! A Parquet-style file format is realized by using a chunked layout containing column layouts
//! containing chunked layouts containing flat layouts. The outer chunked layout represents row
//! groups. The inner chunked layout represents pages.
//!
//! All the chunks of a chunked layout and all the columns of a column layout need not use the same
//! layout.
//!
//! Anything implementing [VortexReadAt][vortex_io::VortexReadAt], for example local files, byte
//! buffers, and [cloud storage][vortex_io::ObjectStoreReadAt], can be used as the "linear and
//! contiguous memory".
//!
//! # Reading
//!
//! Layout reading is implemented by [VortexFileArrayStream]. The VortexFileArrayStream should be
//! constructed by a [VortexReadBuilder], which first uses an [InitialRead] to read the footer (schema,
//! layout, postscript, version, and magic bytes). In most cases, these entire footer can be read by
//! a single read of the suffix of the file.
//!
//! A VortexFileArrayStream internally contains a [LayoutMessageCache] which is shared by its layout
//! reader and the layout reader's descendents. The cache permits the reading system to "read" the
//! bytes of a layout multiple times without triggering reads to the underlying storage. For
//! example, the VortexFileArrayStream reads an array, evaluates the row filter, and then reads the
//! array again with the filter mask.
//!
//! [`read_layout_from_initial`] produces a [LayoutReader] which assembles one or more Vortex arrays
//! by reading the serialized data and metadata.
//!
//! # Apache Arrow
//!
//! If you ultimately seek Arrow arrays, [VortexRecordBatchReader] converts a [VortexFileArrayStream]
//! into a RecordBatchReader.

pub mod chunked_reader;
mod dtype_reader;

pub use dtype_reader::*;

mod read;
mod write;

mod pruning;
#[cfg(test)]
mod tests;

/// The current version of the Vortex file format
pub const VERSION: u16 = 1;
/// The size of the footer in bytes in Vortex version 1
pub const V1_FOOTER_FBS_SIZE: usize = 32;

/// Constants that will never change (i.e., doing so would break backwards compatibility)
mod forever_constant {
    use super::*;

    /// The extension for Vortex files
    pub const VORTEX_FILE_EXTENSION: &str = "vortex";

    /// The maximum length of a Vortex footer in bytes
    pub const MAX_FOOTER_SIZE: u16 = u16::MAX - 8;
    /// The magic bytes for a Vortex file
    pub const MAGIC_BYTES: [u8; 4] = *b"VTXF";
    /// The size of the EOF marker in bytes
    pub const EOF_SIZE: usize = 8;

    /// The layout ID for a flat layout
    pub const FLAT_LAYOUT_ID: LayoutId = LayoutId(1);
    /// The layout ID for a chunked layout
    pub const CHUNKED_LAYOUT_ID: LayoutId = LayoutId(2);
    /// The layout ID for a column layout
    pub const COLUMNAR_LAYOUT_ID: LayoutId = LayoutId(3);
    /// The layout ID for an inline schema layout
    pub const INLINE_SCHEMA_LAYOUT_ID: LayoutId = LayoutId(4);

    #[cfg(test)]
    mod test {
        use super::*;

        #[test]
        fn never_change_these_constants() {
            assert_eq!(V1_FOOTER_FBS_SIZE, 32);
            assert_eq!(MAX_FOOTER_SIZE, 65527);
            assert_eq!(MAGIC_BYTES, *b"VTXF");
            assert_eq!(EOF_SIZE, 8);
            assert_eq!(FLAT_LAYOUT_ID, LayoutId(1));
            assert_eq!(CHUNKED_LAYOUT_ID, LayoutId(2));
            assert_eq!(COLUMNAR_LAYOUT_ID, LayoutId(3));
            assert_eq!(INLINE_SCHEMA_LAYOUT_ID, LayoutId(4));
        }
    }
}

pub use forever_constant::*;
pub use read::*;
pub use write::*;

#[cfg(test)]
#[allow(clippy::panic_in_result_fn)]
mod test {
    use std::sync::Arc;

    use bytes::Bytes;
    use futures_executor::block_on;
    use futures_util::{pin_mut, StreamExt, TryStreamExt};
    use itertools::Itertools;
    use vortex_array::array::{ChunkedArray, PrimitiveArray, PrimitiveEncoding};
    use vortex_array::encoding::EncodingVTable;
    use vortex_array::stream::ArrayStreamExt;
    use vortex_array::{ArrayDType, Context, IntoArrayData, IntoArrayVariant};
    use vortex_buffer::Buffer;
    use vortex_error::VortexResult;
    use vortex_io::VortexBufReader;
    use vortex_ipc::stream_reader::StreamArrayReader;
    use vortex_ipc::stream_writer::StreamArrayWriter;

    fn write_ipc<A: IntoArrayData>(array: A) -> Vec<u8> {
        block_on(async {
            StreamArrayWriter::new(vec![])
                .write_array(array.into_array())
                .await
                .unwrap()
                .into_inner()
        })
    }

    #[tokio::test]
    #[cfg_attr(miri, ignore)]
    async fn test_empty_index() -> VortexResult<()> {
        let data = PrimitiveArray::from((0i32..3_000_000).collect_vec());
        let buffer = write_ipc(data);

        let indices = PrimitiveArray::from(vec![1, 2, 10]).into_array();

        let ctx = Arc::new(Context::default());
        let stream_reader =
            StreamArrayReader::try_new(VortexBufReader::new(Bytes::from(buffer)), ctx)
                .await
                .unwrap()
                .load_dtype()
                .await
                .unwrap();
        let reader = stream_reader.into_array_stream();

        let result_iter = reader.take_rows(indices)?;
        pin_mut!(result_iter);

        let _result = block_on(async { result_iter.next().await.unwrap().unwrap() });
        Ok(())
    }

    #[tokio::test]
    #[cfg_attr(miri, ignore)]
    async fn test_write_read_chunked() -> VortexResult<()> {
        let indices = PrimitiveArray::from(vec![
            10u32, 11, 12, 13, 100_000, 2_999_999, 2_999_999, 3_000_000,
        ])
        .into_array();

        // NB: the order is reversed here to ensure we aren't grabbing indexes instead of values
        let data = PrimitiveArray::from((0i32..3_000_000).rev().collect_vec()).into_array();
        let data2 =
            PrimitiveArray::from((3_000_000i32..6_000_000).rev().collect_vec()).into_array();
        let chunked = ChunkedArray::try_new(vec![data.clone(), data2], data.dtype().clone())?;
        let buffer = write_ipc(chunked);
        let buffer = Buffer::from(buffer);

        let ctx = Arc::new(Context::default());
        let stream_reader = StreamArrayReader::try_new(VortexBufReader::new(buffer), ctx)
            .await
            .unwrap()
            .load_dtype()
            .await
            .unwrap();

        let take_iter = stream_reader.into_array_stream().take_rows(indices)?;
        pin_mut!(take_iter);

        let next = block_on(async { take_iter.try_next().await })?.expect("Expected a chunk");
        assert_eq!(next.encoding().id(), PrimitiveEncoding.id());

        assert_eq!(
            next.into_primitive().unwrap().maybe_null_slice::<i32>(),
            vec![2999989, 2999988, 2999987, 2999986, 2899999, 0, 0]
        );
        assert_eq!(
            block_on(async { take_iter.try_next().await })?
                .expect("Expected a chunk")
                .into_primitive()
                .unwrap()
                .maybe_null_slice::<i32>(),
            vec![5999999]
        );

        Ok(())
    }
}