1use std::any::Any;
5use std::sync::LazyLock;
6
7use arcref::ArcRef;
8use vortex_dtype::DType;
9use vortex_error::VortexError;
10use vortex_error::VortexResult;
11use vortex_error::vortex_bail;
12use vortex_error::vortex_err;
13use vortex_scalar::NumericOperator;
14use vortex_scalar::Scalar;
15
16use crate::Array;
17use crate::ArrayRef;
18use crate::IntoArray;
19use crate::arrays::ConstantArray;
20use crate::arrow::Datum;
21use crate::arrow::from_arrow_array_with_len;
22use crate::compute::ComputeFn;
23use crate::compute::ComputeFnVTable;
24use crate::compute::InvocationArgs;
25use crate::compute::Kernel;
26use crate::compute::Options;
27use crate::compute::Output;
28use crate::vtable::VTable;
29
30static NUMERIC_FN: LazyLock<ComputeFn> = LazyLock::new(|| {
31 let compute = ComputeFn::new("numeric".into(), ArcRef::new_ref(&Numeric));
32 for kernel in inventory::iter::<NumericKernelRef> {
33 compute.register_kernel(kernel.0.clone());
34 }
35 compute
36});
37
38pub(crate) fn warm_up_vtable() -> usize {
39 NUMERIC_FN.kernels().len()
40}
41
42pub fn add(lhs: &dyn Array, rhs: &dyn Array) -> VortexResult<ArrayRef> {
48 numeric(lhs, rhs, NumericOperator::Add)
49}
50
51pub fn add_scalar(lhs: &dyn Array, rhs: Scalar) -> VortexResult<ArrayRef> {
53 numeric(
54 lhs,
55 &ConstantArray::new(rhs, lhs.len()).into_array(),
56 NumericOperator::Add,
57 )
58}
59
60pub fn sub(lhs: &dyn Array, rhs: &dyn Array) -> VortexResult<ArrayRef> {
62 numeric(lhs, rhs, NumericOperator::Sub)
63}
64
65pub fn sub_scalar(lhs: &dyn Array, rhs: Scalar) -> VortexResult<ArrayRef> {
67 numeric(
68 lhs,
69 &ConstantArray::new(rhs, lhs.len()).into_array(),
70 NumericOperator::Sub,
71 )
72}
73
74pub fn mul(lhs: &dyn Array, rhs: &dyn Array) -> VortexResult<ArrayRef> {
76 numeric(lhs, rhs, NumericOperator::Mul)
77}
78
79pub fn mul_scalar(lhs: &dyn Array, rhs: Scalar) -> VortexResult<ArrayRef> {
81 numeric(
82 lhs,
83 &ConstantArray::new(rhs, lhs.len()).into_array(),
84 NumericOperator::Mul,
85 )
86}
87
88pub fn div(lhs: &dyn Array, rhs: &dyn Array) -> VortexResult<ArrayRef> {
90 numeric(lhs, rhs, NumericOperator::Div)
91}
92
93pub fn div_scalar(lhs: &dyn Array, rhs: Scalar) -> VortexResult<ArrayRef> {
95 numeric(
96 lhs,
97 &ConstantArray::new(rhs, lhs.len()).into_array(),
98 NumericOperator::Mul,
99 )
100}
101
102pub fn numeric(lhs: &dyn Array, rhs: &dyn Array, op: NumericOperator) -> VortexResult<ArrayRef> {
104 NUMERIC_FN
105 .invoke(&InvocationArgs {
106 inputs: &[lhs.into(), rhs.into()],
107 options: &op,
108 })?
109 .unwrap_array()
110}
111
112pub struct NumericKernelRef(ArcRef<dyn Kernel>);
113inventory::collect!(NumericKernelRef);
114
115pub trait NumericKernel: VTable {
116 fn numeric(
117 &self,
118 array: &Self::Array,
119 other: &dyn Array,
120 op: NumericOperator,
121 ) -> VortexResult<Option<ArrayRef>>;
122}
123
124#[derive(Debug)]
125pub struct NumericKernelAdapter<V: VTable>(pub V);
126
127impl<V: VTable + NumericKernel> NumericKernelAdapter<V> {
128 pub const fn lift(&'static self) -> NumericKernelRef {
129 NumericKernelRef(ArcRef::new_ref(self))
130 }
131}
132
133impl<V: VTable + NumericKernel> Kernel for NumericKernelAdapter<V> {
134 fn invoke(&self, args: &InvocationArgs) -> VortexResult<Option<Output>> {
135 let inputs = NumericArgs::try_from(args)?;
136 let Some(lhs) = inputs.lhs.as_opt::<V>() else {
137 return Ok(None);
138 };
139 Ok(V::numeric(&self.0, lhs, inputs.rhs, inputs.operator)?.map(|array| array.into()))
140 }
141}
142
143struct Numeric;
144
145impl ComputeFnVTable for Numeric {
146 fn invoke(
147 &self,
148 args: &InvocationArgs,
149 kernels: &[ArcRef<dyn Kernel>],
150 ) -> VortexResult<Output> {
151 let NumericArgs { lhs, rhs, operator } = NumericArgs::try_from(args)?;
152
153 for kernel in kernels {
154 if let Some(output) = kernel.invoke(args)? {
155 return Ok(output);
156 }
157 }
158
159 if let Some(output) = lhs.invoke(&NUMERIC_FN, args)? {
161 return Ok(output);
162 }
163
164 let inverted_args = InvocationArgs {
166 inputs: &[rhs.into(), lhs.into()],
167 options: &operator.swap(),
168 };
169 for kernel in kernels {
170 if let Some(output) = kernel.invoke(&inverted_args)? {
171 return Ok(output);
172 }
173 }
174 if let Some(output) = rhs.invoke(&NUMERIC_FN, &inverted_args)? {
175 return Ok(output);
176 }
177
178 log::debug!(
179 "No numeric implementation found for LHS {}, RHS {}, and operator {:?}",
180 lhs.encoding_id(),
181 rhs.encoding_id(),
182 operator,
183 );
184
185 Ok(arrow_numeric(lhs, rhs, operator)?.into())
187 }
188
189 fn return_dtype(&self, args: &InvocationArgs) -> VortexResult<DType> {
190 let NumericArgs { lhs, rhs, .. } = NumericArgs::try_from(args)?;
191 if !matches!(
192 (lhs.dtype(), rhs.dtype()),
193 (DType::Primitive(..), DType::Primitive(..)) | (DType::Decimal(..), DType::Decimal(..))
194 ) || !lhs.dtype().eq_ignore_nullability(rhs.dtype())
195 {
196 vortex_bail!(
197 "Numeric operations are only supported on two arrays sharing the same numeric type: {} {}",
198 lhs.dtype(),
199 rhs.dtype()
200 )
201 }
202 Ok(lhs.dtype().union_nullability(rhs.dtype().nullability()))
203 }
204
205 fn return_len(&self, args: &InvocationArgs) -> VortexResult<usize> {
206 let NumericArgs { lhs, rhs, .. } = NumericArgs::try_from(args)?;
207 if lhs.len() != rhs.len() {
208 vortex_bail!(
209 "Numeric operations aren't supported on arrays of different lengths {} {}",
210 lhs.len(),
211 rhs.len()
212 )
213 }
214 Ok(lhs.len())
215 }
216
217 fn is_elementwise(&self) -> bool {
218 true
219 }
220}
221
222struct NumericArgs<'a> {
223 lhs: &'a dyn Array,
224 rhs: &'a dyn Array,
225 operator: NumericOperator,
226}
227
228impl<'a> TryFrom<&InvocationArgs<'a>> for NumericArgs<'a> {
229 type Error = VortexError;
230
231 fn try_from(args: &InvocationArgs<'a>) -> VortexResult<Self> {
232 if args.inputs.len() != 2 {
233 vortex_bail!("Numeric operations require exactly 2 inputs");
234 }
235 let lhs = args.inputs[0]
236 .array()
237 .ok_or_else(|| vortex_err!("LHS is not an array"))?;
238 let rhs = args.inputs[1]
239 .array()
240 .ok_or_else(|| vortex_err!("RHS is not an array"))?;
241 let operator = *args
242 .options
243 .as_any()
244 .downcast_ref::<NumericOperator>()
245 .ok_or_else(|| vortex_err!("Operator is not a numeric operator"))?;
246 Ok(Self { lhs, rhs, operator })
247 }
248}
249
250impl Options for NumericOperator {
251 fn as_any(&self) -> &dyn Any {
252 self
253 }
254}
255
256fn arrow_numeric(
261 lhs: &dyn Array,
262 rhs: &dyn Array,
263 operator: NumericOperator,
264) -> VortexResult<ArrayRef> {
265 let nullable = lhs.dtype().is_nullable() || rhs.dtype().is_nullable();
266 let len = lhs.len();
267
268 let left = Datum::try_new(lhs)?;
269 let right = Datum::try_new_with_target_datatype(rhs, left.data_type())?;
270
271 let array = match operator {
272 NumericOperator::Add => arrow_arith::numeric::add(&left, &right)?,
273 NumericOperator::Sub => arrow_arith::numeric::sub(&left, &right)?,
274 NumericOperator::RSub => arrow_arith::numeric::sub(&right, &left)?,
275 NumericOperator::Mul => arrow_arith::numeric::mul(&left, &right)?,
276 NumericOperator::Div => arrow_arith::numeric::div(&left, &right)?,
277 NumericOperator::RDiv => arrow_arith::numeric::div(&right, &left)?,
278 };
279
280 Ok(from_arrow_array_with_len(array.as_ref(), len, nullable))
281}
282
283#[cfg(test)]
284mod test {
285 use vortex_buffer::buffer;
286 use vortex_scalar::Scalar;
287
288 use crate::IntoArray;
289 use crate::arrays::PrimitiveArray;
290 use crate::canonical::ToCanonical;
291 use crate::compute::sub_scalar;
292
293 #[test]
294 fn test_scalar_subtract_unsigned() {
295 let values = buffer![1u16, 2, 3].into_array();
296 let results = sub_scalar(&values, 1u16.into())
297 .unwrap()
298 .to_primitive()
299 .as_slice::<u16>()
300 .to_vec();
301 assert_eq!(results, &[0u16, 1, 2]);
302 }
303
304 #[test]
305 fn test_scalar_subtract_signed() {
306 let values = buffer![1i64, 2, 3].into_array();
307 let results = sub_scalar(&values, (-1i64).into())
308 .unwrap()
309 .to_primitive()
310 .as_slice::<i64>()
311 .to_vec();
312 assert_eq!(results, &[2i64, 3, 4]);
313 }
314
315 #[test]
316 fn test_scalar_subtract_nullable() {
317 let values = PrimitiveArray::from_option_iter([Some(1u16), Some(2), None, Some(3)]);
318 let result = sub_scalar(values.as_ref(), Some(1u16).into())
319 .unwrap()
320 .to_primitive();
321
322 let actual = (0..result.len())
323 .map(|index| result.scalar_at(index))
324 .collect::<Vec<_>>();
325 assert_eq!(
326 actual,
327 vec![
328 Scalar::from(Some(0u16)),
329 Scalar::from(Some(1u16)),
330 Scalar::from(None::<u16>),
331 Scalar::from(Some(2u16))
332 ]
333 );
334 }
335
336 #[test]
337 fn test_scalar_subtract_float() {
338 let values = buffer![1.0f64, 2.0, 3.0].into_array();
339 let to_subtract = -1f64;
340 let results = sub_scalar(&values, to_subtract.into())
341 .unwrap()
342 .to_primitive()
343 .as_slice::<f64>()
344 .to_vec();
345 assert_eq!(results, &[2.0f64, 3.0, 4.0]);
346 }
347
348 #[test]
349 fn test_scalar_subtract_float_underflow_is_ok() {
350 let values = buffer![f32::MIN, 2.0, 3.0].into_array();
351 let _results = sub_scalar(&values, 1.0f32.into()).unwrap();
352 let _results = sub_scalar(&values, f32::MAX.into()).unwrap();
353 }
354
355 #[test]
356 fn test_scalar_subtract_type_mismatch_fails() {
357 let values = buffer![1u64, 2, 3].into_array();
358 let _results =
360 sub_scalar(&values, 1.5f64.into()).expect_err("Expected type mismatch error");
361 }
362}