Expand description
§VoiRS Vocoders
Neural vocoders for converting mel spectrograms to high-quality audio. Supports HiFi-GAN, WaveGlow, and other state-of-the-art vocoders.
This crate provides a unified interface for neural vocoding with support for:
- Multiple neural architectures (HiFi-GAN, DiffWave, WaveGlow)
- Real-time streaming synthesis
- Batch processing for efficiency
- Quality control and performance monitoring
- Singing voice processing with harmonic enhancement
- Spatial audio processing with HRTF
§Quick Start
ⓘ
// This is a conceptual example - actual usage will depend on specific implementations
use voirs_vocoder::{Vocoder, MelSpectrogram, SynthesisConfig};
async fn example_usage() {
// Create a mel spectrogram (this would typically come from a TTS model)
let mel_data = vec![vec![0.0; 80]; 100]; // 80 mel bands, 100 time steps
let mel = MelSpectrogram::new(mel_data, 22050, 256);
// Configure synthesis parameters
let config = SynthesisConfig::default();
// Convert to audio using any Vocoder implementation
// let audio_buffer = vocoder.vocode(&mel, Some(&config)).await?;
}Re-exports§
pub use hifigan::HiFiGanVocoder;pub use models::hifigan::HiFiGanConfig;pub use models::hifigan::HiFiGanVariant;pub use models::hifigan::HiFiGanVariants;pub use streaming::StreamHandle;pub use streaming::StreamingPipeline;pub use streaming::StreamingStats;pub use streaming::StreamingVocoder;
Modules§
- adaptive_
quality - Adaptive quality control system for vocoders
- audio
- Audio processing module for voirs-vocoder.
- backends
- Backend infrastructure for voirs-vocoder.
- broadcast_
quality - Professional broadcast quality enhancement for VoiRS
- cache
- Cache optimization module for improved data locality and memory access patterns
- codecs
- Audio codec implementations.
- comprehensive_
quality_ metrics - Comprehensive quality metrics for all vocoder features
- conditioning
- Unified conditioning interface for advanced vocoder features.
- config
- Configuration system for voirs-vocoder.
- containers
- Audio container format implementations.
- conversion
- Voice conversion functionality for real-time voice transformation.
- drivers
- Real-time audio drivers for voirs-vocoder
- effects
- Audio effects and enhancement system for voirs-vocoder.
- hifigan
- Auto-generated module structure
- loss
- Perceptual loss functions for neural vocoder training and evaluation.
- metrics
- Audio quality metrics for vocoder evaluation
- ml
- Machine Learning Enhancement Module
- models
- Vocoder model definitions and implementations.
- optimization_
paths - Feature-specific optimization paths for vocoder operations
- parallel
- Parallel processing utilities for voirs-vocoder
- performance
- Real-time performance monitoring and quality metrics tracking
- post_
processing - Post-processing pipeline for audio enhancement and quality improvement
- prelude
- Prelude for convenient imports
- profiling
- Performance profiling utilities for vocoder operations
- simd
- SIMD acceleration for audio processing operations
- streaming
- Real-time streaming architecture for neural vocoders
- utils
- Utility modules for vocoder operations
- waveglow
- WaveGlow vocoder implementation.
Structs§
- Audio
Buffer - Audio buffer for holding PCM audio data
- Dummy
Vocoder - Dummy vocoder for testing
- MelSpectrogram
- Mel spectrogram representation
- Synthesis
Config - Synthesis configuration
- Vocoder
Manager - Vocoder manager with multiple architecture support
- Vocoder
Metadata - Vocoder metadata
Enums§
- Language
Code - Language codes supported by VoiRS
- Vocoder
Error - Vocoder-specific error types
- Vocoder
Feature - Features supported by vocoders
Traits§
- Vocoder
- Trait for neural vocoders
Type Aliases§
- Result
- Result type for vocoder operations