1use super::advanced_optimization::{
7 AdvancedOptimizationConfig, KnowledgeDistillationOptimizer, MixedPrecisionOptimizer,
8 PerformanceMeasurement, ProgressivePruningOptimizer,
9};
10use crate::RecognitionError;
11use candle_core::{Device, Tensor};
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::time::Instant;
15use tracing::info;
16
17#[derive(Debug)]
19pub struct OptimizationPipeline {
20 config: AdvancedOptimizationConfig,
22 kd_optimizer: Option<KnowledgeDistillationOptimizer>,
24 pruning_optimizer: Option<ProgressivePruningOptimizer>,
26 mp_optimizer: Option<MixedPrecisionOptimizer>,
28 device: Device,
30 results: OptimizationResults,
32}
33
34#[derive(Debug, Clone, Serialize, Deserialize, Default)]
36pub struct OptimizationResults {
37 pub original_stats: ModelStats,
39 pub optimized_stats: ModelStats,
41 pub distillation_results: Option<DistillationResults>,
43 pub pruning_results: Option<PruningResults>,
45 pub mixed_precision_results: Option<MixedPrecisionResults>,
47 pub summary: OptimizationSummary,
49}
50
51#[derive(Debug, Clone, Serialize, Deserialize)]
53pub struct ModelStats {
54 pub num_parameters: usize,
56 pub model_size_mb: f32,
58 pub inference_time_ms: f32,
60 pub memory_usage_mb: f32,
62 pub accuracy: f32,
64 pub rtf: f32,
66}
67
68#[derive(Debug, Clone, Serialize, Deserialize)]
70pub struct DistillationResults {
71 pub final_loss: f32,
73 pub transfer_efficiency: f32,
75 pub optimal_temperature: f32,
77 pub accuracy_retention: f32,
79}
80
81#[derive(Debug, Clone, Serialize, Deserialize)]
83pub struct PruningResults {
84 pub final_sparsity: f32,
86 pub size_reduction: f32,
88 pub speedup: f32,
90 pub accuracy_retention: f32,
92 pub pruning_steps: usize,
94}
95
96#[derive(Debug, Clone, Serialize, Deserialize)]
98pub struct MixedPrecisionResults {
99 pub precision_distribution: HashMap<String, usize>, pub estimated_speedup: f32,
103 pub memory_reduction: f32,
105 pub accuracy_retention: f32,
107}
108
109#[derive(Debug, Clone, Serialize, Deserialize)]
111pub struct OptimizationSummary {
112 pub optimization_time_s: f32,
114 pub overall_speedup: f32,
116 pub overall_memory_reduction: f32,
118 pub overall_size_reduction: f32,
120 pub final_accuracy_retention: f32,
122 pub techniques_applied: Vec<String>,
124 pub meets_targets: bool,
126}
127
128impl OptimizationPipeline {
129 #[must_use]
131 pub fn new(config: AdvancedOptimizationConfig, device: Device) -> Self {
132 Self {
133 kd_optimizer: if config.enable_knowledge_distillation {
134 Some(KnowledgeDistillationOptimizer::new(
135 config.clone(),
136 device.clone(),
137 ))
138 } else {
139 None
140 },
141 pruning_optimizer: if config.enable_progressive_pruning {
142 Some(ProgressivePruningOptimizer::new(
143 config.clone(),
144 device.clone(),
145 ))
146 } else {
147 None
148 },
149 mp_optimizer: if config.enable_mixed_precision {
150 Some(MixedPrecisionOptimizer::new(config.clone(), device.clone()))
151 } else {
152 None
153 },
154 config,
155 device,
156 results: OptimizationResults::default(),
157 }
158 }
159
160 pub async fn optimize_model(
162 &mut self,
163 model_layers: &mut HashMap<String, Tensor>,
164 teacher_layers: Option<HashMap<String, Tensor>>,
165 validation_fn: impl Fn(&HashMap<String, Tensor>) -> Result<ModelStats, RecognitionError> + Copy,
166 ) -> Result<OptimizationResults, RecognitionError> {
167 let start_time = Instant::now();
168 info!("Starting comprehensive model optimization pipeline");
169
170 let original_stats = validation_fn(model_layers)?;
172 info!(
173 "Original model: {:.1}MB, {:.1}ms inference, {:.3} accuracy",
174 original_stats.model_size_mb, original_stats.inference_time_ms, original_stats.accuracy
175 );
176
177 let mut techniques_applied = Vec::new();
178
179 let distillation_results = if self.config.enable_knowledge_distillation {
181 if let (Some(teacher), Some(kd_optimizer)) =
182 (teacher_layers, self.kd_optimizer.as_mut())
183 {
184 info!("Applying knowledge distillation");
185 kd_optimizer.set_teacher_layers(teacher);
186 kd_optimizer.set_student_layers(model_layers.clone());
187
188 let results = Self::apply_knowledge_distillation_static(
189 &self.device,
190 kd_optimizer,
191 model_layers,
192 validation_fn,
193 )
194 .await?;
195 techniques_applied.push("Knowledge Distillation".to_string());
196 Some(results)
197 } else {
198 None
199 }
200 } else {
201 None
202 };
203
204 let pruning_results = if self.config.enable_progressive_pruning {
206 if let Some(pruning_optimizer) = self.pruning_optimizer.as_mut() {
207 info!("Applying progressive pruning");
208 let results = Self::apply_progressive_pruning_static(
209 &self.device,
210 pruning_optimizer,
211 model_layers,
212 validation_fn,
213 )
214 .await?;
215 techniques_applied.push("Progressive Pruning".to_string());
216 Some(results)
217 } else {
218 None
219 }
220 } else {
221 None
222 };
223
224 let mixed_precision_results = if self.config.enable_mixed_precision {
226 if let Some(mp_optimizer) = self.mp_optimizer.as_mut() {
227 info!("Applying mixed-precision optimization");
228 let results = Self::apply_mixed_precision_static(
229 &self.device,
230 mp_optimizer,
231 model_layers,
232 validation_fn,
233 )
234 .await?;
235 techniques_applied.push("Mixed-Precision".to_string());
236 Some(results)
237 } else {
238 None
239 }
240 } else {
241 None
242 };
243
244 let optimized_stats = validation_fn(model_layers)?;
246 let optimization_time = start_time.elapsed().as_secs_f32();
247
248 let overall_speedup = original_stats.inference_time_ms / optimized_stats.inference_time_ms;
250 let overall_memory_reduction = (original_stats.memory_usage_mb
251 - optimized_stats.memory_usage_mb)
252 / original_stats.memory_usage_mb;
253 let overall_size_reduction = (original_stats.model_size_mb - optimized_stats.model_size_mb)
254 / original_stats.model_size_mb;
255 let final_accuracy_retention = optimized_stats.accuracy / original_stats.accuracy;
256
257 let meets_targets = optimized_stats.rtf <= self.config.performance_budget
258 && final_accuracy_retention >= self.config.accuracy_budget;
259
260 let summary = OptimizationSummary {
261 optimization_time_s: optimization_time,
262 overall_speedup,
263 overall_memory_reduction,
264 overall_size_reduction,
265 final_accuracy_retention,
266 techniques_applied,
267 meets_targets,
268 };
269
270 let results = OptimizationResults {
271 original_stats,
272 optimized_stats,
273 distillation_results,
274 pruning_results,
275 mixed_precision_results,
276 summary,
277 };
278
279 self.results = results.clone();
280
281 info!("Optimization completed in {:.1}s: {:.2}x speedup, {:.1}% memory reduction, {:.1}% accuracy retention",
282 optimization_time, overall_speedup, overall_memory_reduction * 100.0, final_accuracy_retention * 100.0);
283
284 Ok(results)
285 }
286
287 async fn apply_knowledge_distillation_static(
289 device: &Device,
290 kd_optimizer: &mut KnowledgeDistillationOptimizer,
291 model_layers: &mut HashMap<String, Tensor>,
292 validation_fn: impl Fn(&HashMap<String, Tensor>) -> Result<ModelStats, RecognitionError>,
293 ) -> Result<DistillationResults, RecognitionError> {
294 let temperatures = vec![1.0, 2.0, 4.0, 8.0, 16.0];
296 let validation_data: Vec<Tensor> = vec![
297 Tensor::randn(0.0, 1.0, (1, 512), device)?,
298 Tensor::randn(0.0, 1.0, (1, 512), device)?,
299 Tensor::randn(0.0, 1.0, (1, 512), device)?,
300 ];
301
302 kd_optimizer
303 .analyze_temperature_sensitivity(temperatures, &validation_data)
304 .await?;
305
306 let layer_losses = kd_optimizer.distill_intermediate_layers()?;
308 let final_loss = layer_losses.values().sum::<f32>() / layer_losses.len() as f32;
309
310 let stats = kd_optimizer.get_stats();
312 let optimal_temperature = stats
313 .temperature_sensitivity
314 .iter()
315 .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap())
316 .map_or(4.0, |&(temp, _)| temp);
317
318 let final_stats = validation_fn(model_layers)?;
320 let initial_accuracy = 1.0; let accuracy_retention = final_stats.accuracy / initial_accuracy;
322
323 let transfer_efficiency = stats.transfer_efficiency;
324
325 Ok(DistillationResults {
326 final_loss,
327 transfer_efficiency,
328 optimal_temperature,
329 accuracy_retention,
330 })
331 }
332
333 async fn apply_progressive_pruning_static(
335 _device: &Device,
336 pruning_optimizer: &mut ProgressivePruningOptimizer,
337 model_layers: &mut HashMap<String, Tensor>,
338 validation_fn: impl Fn(&HashMap<String, Tensor>) -> Result<ModelStats, RecognitionError>,
339 ) -> Result<PruningResults, RecognitionError> {
340 pruning_optimizer.compute_layer_importance(model_layers)?;
342
343 let initial_stats = validation_fn(model_layers)?;
344 let mut all_step_results = Vec::new();
345
346 let (current_step, total_steps) = pruning_optimizer.get_progress();
348 for _step in current_step..total_steps {
349 let step_result = pruning_optimizer.execute_pruning_step(model_layers, |layers| {
350 validation_fn(layers).map(|stats| stats.accuracy)
351 })?;
352 all_step_results.push(step_result);
353 }
354
355 let final_stats = validation_fn(model_layers)?;
356
357 let final_sparsity = if let Some(last_step) = all_step_results.last() {
359 last_step.pruning_ratio
360 } else {
361 0.0
362 };
363
364 let size_reduction =
365 (initial_stats.model_size_mb - final_stats.model_size_mb) / initial_stats.model_size_mb;
366 let speedup = initial_stats.inference_time_ms / final_stats.inference_time_ms;
367 let accuracy_retention = final_stats.accuracy / initial_stats.accuracy;
368
369 Ok(PruningResults {
370 final_sparsity,
371 size_reduction,
372 speedup,
373 accuracy_retention,
374 pruning_steps: all_step_results.len(),
375 })
376 }
377
378 async fn apply_mixed_precision_static(
380 _device: &Device,
381 mp_optimizer: &mut MixedPrecisionOptimizer,
382 model_layers: &mut HashMap<String, Tensor>,
383 validation_fn: impl Fn(&HashMap<String, Tensor>) -> Result<ModelStats, RecognitionError>,
384 ) -> Result<MixedPrecisionResults, RecognitionError> {
385 let initial_stats = validation_fn(model_layers)?;
386
387 mp_optimizer.auto_select_precisions(model_layers, |layers| {
389 validation_fn(layers).map(|stats| PerformanceMeasurement {
390 inference_time_ms: stats.inference_time_ms,
391 memory_usage_mb: stats.memory_usage_mb,
392 accuracy: stats.accuracy,
393 model_size_mb: stats.model_size_mb,
394 })
395 })?;
396
397 let mp_stats = mp_optimizer.apply_mixed_precision(model_layers)?;
399
400 let final_stats = validation_fn(model_layers)?;
401
402 let mut precision_distribution = HashMap::new();
404 precision_distribution.insert("FP32".to_string(), mp_stats.fp32_layers);
405 precision_distribution.insert("FP16".to_string(), mp_stats.fp16_layers);
406 precision_distribution.insert("INT8".to_string(), mp_stats.int8_layers);
407
408 let memory_reduction = (initial_stats.memory_usage_mb - final_stats.memory_usage_mb)
409 / initial_stats.memory_usage_mb;
410 let accuracy_retention = final_stats.accuracy / initial_stats.accuracy;
411
412 Ok(MixedPrecisionResults {
413 precision_distribution,
414 estimated_speedup: mp_stats.estimated_speedup,
415 memory_reduction,
416 accuracy_retention,
417 })
418 }
419
420 #[must_use]
422 pub fn generate_report(&self) -> String {
423 let results = &self.results;
424 let mut report = String::new();
425
426 report.push_str("# Model Optimization Report\n\n");
427
428 report.push_str("## Summary\n");
430 report.push_str(&format!(
431 "- **Overall Speedup**: {:.2}x\n",
432 results.summary.overall_speedup
433 ));
434 report.push_str(&format!(
435 "- **Memory Reduction**: {:.1}%\n",
436 results.summary.overall_memory_reduction * 100.0
437 ));
438 report.push_str(&format!(
439 "- **Model Size Reduction**: {:.1}%\n",
440 results.summary.overall_size_reduction * 100.0
441 ));
442 report.push_str(&format!(
443 "- **Accuracy Retention**: {:.1}%\n",
444 results.summary.final_accuracy_retention * 100.0
445 ));
446 report.push_str(&format!(
447 "- **Optimization Time**: {:.1}s\n",
448 results.summary.optimization_time_s
449 ));
450 report.push_str(&format!(
451 "- **Meets Targets**: {}\n\n",
452 if results.summary.meets_targets {
453 "✅ Yes"
454 } else {
455 "❌ No"
456 }
457 ));
458
459 report.push_str("## Model Comparison\n");
461 report.push_str("| Metric | Original | Optimized | Improvement |\n");
462 report.push_str("|--------|----------|-----------|-------------|\n");
463
464 let size_improvement = (results.original_stats.model_size_mb
465 - results.optimized_stats.model_size_mb)
466 / results.original_stats.model_size_mb
467 * 100.0;
468 let speed_improvement = (results.original_stats.inference_time_ms
469 - results.optimized_stats.inference_time_ms)
470 / results.original_stats.inference_time_ms
471 * 100.0;
472 let memory_improvement = (results.original_stats.memory_usage_mb
473 - results.optimized_stats.memory_usage_mb)
474 / results.original_stats.memory_usage_mb
475 * 100.0;
476
477 report.push_str(&format!(
478 "| Model Size (MB) | {:.1} | {:.1} | {:.1}% |\n",
479 results.original_stats.model_size_mb,
480 results.optimized_stats.model_size_mb,
481 size_improvement
482 ));
483 report.push_str(&format!(
484 "| Inference Time (ms) | {:.1} | {:.1} | {:.1}% |\n",
485 results.original_stats.inference_time_ms,
486 results.optimized_stats.inference_time_ms,
487 speed_improvement
488 ));
489 report.push_str(&format!(
490 "| Memory Usage (MB) | {:.1} | {:.1} | {:.1}% |\n",
491 results.original_stats.memory_usage_mb,
492 results.optimized_stats.memory_usage_mb,
493 memory_improvement
494 ));
495 report.push_str(&format!(
496 "| Accuracy | {:.3} | {:.3} | {:.1}% |\n\n",
497 results.original_stats.accuracy,
498 results.optimized_stats.accuracy,
499 (results.optimized_stats.accuracy - results.original_stats.accuracy)
500 / results.original_stats.accuracy
501 * 100.0
502 ));
503
504 report.push_str("## Optimization Techniques Applied\n");
506 for technique in &results.summary.techniques_applied {
507 report.push_str(&format!("- {technique}\n"));
508 }
509 report.push('\n');
510
511 if let Some(distillation) = &results.distillation_results {
513 report.push_str("### Knowledge Distillation Results\n");
514 report.push_str(&format!("- Final Loss: {:.6}\n", distillation.final_loss));
515 report.push_str(&format!(
516 "- Transfer Efficiency: {:.3}\n",
517 distillation.transfer_efficiency
518 ));
519 report.push_str(&format!(
520 "- Optimal Temperature: {:.1}\n",
521 distillation.optimal_temperature
522 ));
523 report.push_str(&format!(
524 "- Accuracy Retention: {:.1}%\n\n",
525 distillation.accuracy_retention * 100.0
526 ));
527 }
528
529 if let Some(pruning) = &results.pruning_results {
530 report.push_str("### Progressive Pruning Results\n");
531 report.push_str(&format!(
532 "- Final Sparsity: {:.1}%\n",
533 pruning.final_sparsity * 100.0
534 ));
535 report.push_str(&format!(
536 "- Size Reduction: {:.1}%\n",
537 pruning.size_reduction * 100.0
538 ));
539 report.push_str(&format!("- Speedup: {:.2}x\n", pruning.speedup));
540 report.push_str(&format!("- Pruning Steps: {}\n", pruning.pruning_steps));
541 report.push_str(&format!(
542 "- Accuracy Retention: {:.1}%\n\n",
543 pruning.accuracy_retention * 100.0
544 ));
545 }
546
547 if let Some(mixed_precision) = &results.mixed_precision_results {
548 report.push_str("### Mixed-Precision Results\n");
549 report.push_str(&format!(
550 "- Estimated Speedup: {:.2}x\n",
551 mixed_precision.estimated_speedup
552 ));
553 report.push_str(&format!(
554 "- Memory Reduction: {:.1}%\n",
555 mixed_precision.memory_reduction * 100.0
556 ));
557 report.push_str(&format!(
558 "- Accuracy Retention: {:.1}%\n",
559 mixed_precision.accuracy_retention * 100.0
560 ));
561 report.push_str("- Precision Distribution:\n");
562 for (precision, count) in &mixed_precision.precision_distribution {
563 report.push_str(&format!(" - {precision}: {count} layers\n"));
564 }
565 report.push('\n');
566 }
567
568 report
569 }
570
571 #[must_use]
573 pub fn get_results(&self) -> &OptimizationResults {
574 &self.results
575 }
576}
577
578impl Default for ModelStats {
579 fn default() -> Self {
580 Self {
581 num_parameters: 0,
582 model_size_mb: 0.0,
583 inference_time_ms: 0.0,
584 memory_usage_mb: 0.0,
585 accuracy: 0.0,
586 rtf: 0.0,
587 }
588 }
589}
590
591impl Default for OptimizationSummary {
592 fn default() -> Self {
593 Self {
594 optimization_time_s: 0.0,
595 overall_speedup: 1.0,
596 overall_memory_reduction: 0.0,
597 overall_size_reduction: 0.0,
598 final_accuracy_retention: 1.0,
599 techniques_applied: Vec::new(),
600 meets_targets: false,
601 }
602 }
603}
604
605#[cfg(test)]
606mod tests {
607 use super::*;
608 use candle_core::Device;
609
610 #[tokio::test]
611 async fn test_optimization_pipeline_creation() {
612 let config = AdvancedOptimizationConfig::default();
613 let device = Device::Cpu;
614 let pipeline = OptimizationPipeline::new(config, device);
615
616 assert!(pipeline.mp_optimizer.is_some());
617 assert!(pipeline.kd_optimizer.is_none()); assert!(pipeline.pruning_optimizer.is_none()); }
620
621 #[test]
622 fn test_optimization_results_default() {
623 let results = OptimizationResults::default();
624 assert_eq!(results.original_stats.num_parameters, 0);
625 assert_eq!(results.optimized_stats.num_parameters, 0);
626 assert!(results.distillation_results.is_none());
627 assert!(results.pruning_results.is_none());
628 assert!(results.mixed_precision_results.is_none());
629 }
630
631 #[test]
632 fn test_report_generation() {
633 let mut results = OptimizationResults::default();
634 results.summary.overall_speedup = 1.5;
635 results.summary.overall_memory_reduction = 0.2;
636 results.summary.final_accuracy_retention = 0.98;
637 results.summary.techniques_applied = vec!["Mixed-Precision".to_string()];
638 results.summary.meets_targets = true;
639
640 let mut pipeline =
641 OptimizationPipeline::new(AdvancedOptimizationConfig::default(), Device::Cpu);
642 pipeline.results = results;
643
644 let report = pipeline.generate_report();
645 assert!(report.contains("# Model Optimization Report"));
646 assert!(report.contains("1.50x"));
647 assert!(report.contains("20.0%"));
648 assert!(report.contains("Mixed-Precision"));
649 }
650}