1use super::types::*;
6use crate::commands::train::progress::ResourceUsage;
7use crate::error::CliError;
8use crate::output::OutputFormatter;
9use crate::performance::monitor::{MonitorConfig, PerformanceMonitor};
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12use std::path::PathBuf;
13use std::time::{Duration, Instant};
14use voirs_sdk::config::AppConfig;
15
16pub struct DebugPipelineConfig<'a> {
37 pub feature: &'a str,
39 pub verbose: bool,
41 pub input: Option<&'a str>,
43 pub output: Option<&'a std::path::Path>,
45 pub step_by_step: bool,
47 pub profile: bool,
49}
50
51pub struct BenchmarkConfig<'a> {
73 pub all_features: bool,
75 pub features: Option<&'a [String]>,
77 pub report: Option<&'a std::path::Path>,
79 pub iterations: u32,
81 pub quality: bool,
83 pub memory: bool,
85 pub timeout: &'a str,
87}
88
89pub struct ValidationConfig<'a> {
110 pub check_all_features: bool,
112 pub features: Option<&'a [String]>,
114 pub format: &'a str,
116 pub detailed: bool,
118 pub fix: bool,
120 pub output: Option<&'a std::path::Path>,
122}
123
124pub async fn execute_monitoring_command(
126 command: MonitoringCommand,
127 output_formatter: &OutputFormatter,
128 config: &AppConfig,
129) -> Result<(), CliError> {
130 match command {
131 MonitoringCommand::Monitor {
132 feature,
133 duration,
134 format,
135 output,
136 realtime,
137 detailed,
138 } => {
139 execute_performance_monitor(
140 PerformanceMonitorArgs {
141 feature: &feature,
142 duration: &duration,
143 format: &format,
144 output: output.as_deref(),
145 realtime,
146 detailed,
147 },
148 output_formatter,
149 config,
150 )
151 .await
152 }
153 MonitoringCommand::Debug {
154 feature,
155 verbose,
156 input,
157 output,
158 step_by_step,
159 profile,
160 } => {
161 let args = DebugPipelineConfig {
162 feature: &feature,
163 verbose,
164 input: input.as_deref(),
165 output: output.as_deref(),
166 step_by_step,
167 profile,
168 };
169 execute_debug_pipeline(&args, output_formatter, config).await
170 }
171 MonitoringCommand::Benchmark {
172 all_features,
173 features,
174 report,
175 iterations,
176 quality,
177 memory,
178 timeout,
179 } => {
180 let args = BenchmarkConfig {
181 all_features,
182 features: features.as_deref(),
183 report: report.as_deref(),
184 iterations,
185 quality,
186 memory,
187 timeout: &timeout,
188 };
189 execute_benchmark(&args, output_formatter, config).await
190 }
191 MonitoringCommand::Validate {
192 check_all_features,
193 features,
194 format,
195 detailed,
196 fix,
197 output,
198 } => {
199 let args = ValidationConfig {
200 check_all_features,
201 features: features.as_deref(),
202 format: &format,
203 detailed,
204 fix,
205 output: output.as_deref(),
206 };
207 execute_validation(&args, output_formatter, config).await
208 }
209 }
210}
211
212struct PerformanceMonitorArgs<'a> {
214 feature: &'a str,
215 duration: &'a str,
216 format: &'a str,
217 output: Option<&'a std::path::Path>,
218 realtime: bool,
219 detailed: bool,
220}
221
222async fn execute_performance_monitor(
224 args: PerformanceMonitorArgs<'_>,
225 output_formatter: &OutputFormatter,
226 config: &AppConfig,
227) -> Result<(), CliError> {
228 output_formatter.info(&format!(
229 "Starting performance monitoring for feature: {}",
230 args.feature
231 ));
232 let duration_secs = parse_duration(args.duration)?;
233 let start_time = Instant::now();
234 let monitor_config = MonitorConfig {
235 interval: Duration::from_secs(1),
236 enabled: true,
237 ..Default::default()
238 };
239 let monitor = PerformanceMonitor::new(monitor_config);
240 monitor.start().await.map_err(|e| {
241 CliError::monitoring_error(format!("Failed to start performance monitor: {}", e))
242 })?;
243 let mut metrics = PerformanceMetrics {
244 cpu_usage: Vec::new(),
245 memory_usage: Vec::new(),
246 gpu_utilization: Vec::new(),
247 throughput: 0.0,
248 latency_ms: 0.0,
249 error_rate: 0.0,
250 real_time_factor: 1.0,
251 };
252 let mut alerts = Vec::new();
253 if args.realtime {
254 output_formatter.info("Real-time monitoring enabled. Press Ctrl+C to stop.");
255 }
256 for i in 0..duration_secs {
257 if args.realtime {
258 output_formatter.info(&format!(
259 "Monitoring... {}/{} seconds",
260 i + 1,
261 duration_secs
262 ));
263 }
264 let resource_usage = ResourceUsage::current();
265 let cpu_usage = resource_usage.cpu_percent;
266 let memory_usage = resource_usage.ram_gb * 10.0;
267 let gpu_usage = resource_usage.gpu_percent.unwrap_or(0.0);
268 metrics.cpu_usage.push(cpu_usage);
269 metrics.memory_usage.push(memory_usage);
270 metrics.gpu_utilization.push(gpu_usage);
271 if cpu_usage > 80.0 {
272 alerts.push(PerformanceAlert {
273 timestamp: start_time.elapsed().as_secs(),
274 level: "warning".to_string(),
275 message: "High CPU usage detected".to_string(),
276 metric: "cpu_usage".to_string(),
277 value: cpu_usage,
278 threshold: 80.0,
279 });
280 }
281 tokio::time::sleep(Duration::from_secs(1)).await;
282 }
283 monitor.stop().await.map_err(|e| {
284 CliError::monitoring_error(format!("Failed to stop performance monitor: {}", e))
285 })?;
286 let avg_cpu = metrics.cpu_usage.iter().sum::<f64>() / metrics.cpu_usage.len() as f64;
287 let avg_memory = metrics.memory_usage.iter().sum::<f64>() / metrics.memory_usage.len() as f64;
288 let avg_gpu =
289 metrics.gpu_utilization.iter().sum::<f64>() / metrics.gpu_utilization.len() as f64;
290 metrics.throughput = calculate_throughput(args.feature, duration_secs);
291 metrics.latency_ms = calculate_latency(args.feature);
292 metrics.error_rate = calculate_error_rate(args.feature);
293 metrics.real_time_factor = calculate_real_time_factor(args.feature);
294 let summary = PerformanceSummary {
295 overall_score: calculate_overall_score(avg_cpu, avg_memory, avg_gpu, metrics.error_rate),
296 recommendations: generate_recommendations(args.feature, &metrics, &alerts),
297 issues_found: alerts.iter().map(|a| a.message.clone()).collect(),
298 optimizations: generate_optimizations(args.feature, &metrics),
299 };
300 let report = PerformanceReport {
301 feature: args.feature.to_string(),
302 duration_seconds: duration_secs as f64,
303 start_time: start_time.elapsed().as_secs(),
304 end_time: start_time.elapsed().as_secs(),
305 metrics,
306 alerts,
307 summary,
308 };
309 output_monitoring_results(&report, args.format, args.output, output_formatter)?;
310 output_formatter.info(&format!(
311 "Performance monitoring completed for feature: {}",
312 args.feature
313 ));
314 Ok(())
315}
316async fn execute_debug_pipeline(
318 args: &DebugPipelineConfig<'_>,
319 output_formatter: &OutputFormatter,
320 config: &AppConfig,
321) -> Result<(), CliError> {
322 output_formatter.info(&format!(
323 "Starting debug session for feature: {}",
324 args.feature
325 ));
326 let start_time = Instant::now();
327 let mut execution_steps = Vec::new();
328 let mut errors = Vec::new();
329 let mut warnings = Vec::new();
330 let debug_steps = get_debug_steps(args.feature);
331 let mut successful_steps = 0;
332 let mut failed_steps = 0;
333 for (i, step_name) in debug_steps.iter().enumerate() {
334 let step_start = Instant::now();
335 if args.step_by_step {
336 output_formatter.info(&format!("Step {}: {}", i + 1, step_name));
337 }
338 let step_result = execute_debug_step(args.feature, step_name, args.input, args.verbose);
339 let step_duration = step_start.elapsed().as_millis() as f64;
340 let memory_usage = (ResourceUsage::current().ram_gb * 1_073_741_824.0) as u64;
341 let step = DebugStep {
342 step_id: format!("step_{}", i + 1),
343 name: step_name.clone(),
344 duration_ms: step_duration,
345 input_data: args.input.map(|s| s.to_string()),
346 output_data: step_result.output,
347 memory_usage,
348 status: step_result.status.clone(),
349 details: step_result.details,
350 };
351 execution_steps.push(step);
352 match step_result.status.as_str() {
353 "success" => successful_steps += 1,
354 "error" => {
355 failed_steps += 1;
356 errors.push(DebugError {
357 step: step_name.clone(),
358 error_type: "execution_error".to_string(),
359 message: step_result.error_message.unwrap_or_default(),
360 stack_trace: None,
361 suggestions: generate_debug_suggestions(args.feature, step_name),
362 });
363 }
364 "warning" => {
365 successful_steps += 1;
366 warnings.push(DebugWarning {
367 step: step_name.clone(),
368 warning_type: "performance_warning".to_string(),
369 message: step_result.warning_message.unwrap_or_default(),
370 impact: "medium".to_string(),
371 suggestions: generate_debug_suggestions(args.feature, step_name),
372 });
373 }
374 _ => {}
375 }
376 if args.verbose {
377 output_formatter.info(&format!(
378 " {} completed in {:.2}ms",
379 step_name, step_duration
380 ));
381 }
382 if args.step_by_step {
383 tokio::time::sleep(Duration::from_millis(100)).await;
384 }
385 }
386 let total_time = start_time.elapsed().as_millis() as f64;
387 let performance_profile = if args.profile {
388 Some(PerformanceProfile {
389 total_time_ms: total_time,
390 step_times: execution_steps
391 .iter()
392 .map(|s| (s.name.clone(), s.duration_ms))
393 .collect(),
394 memory_peak: execution_steps
395 .iter()
396 .map(|s| s.memory_usage)
397 .max()
398 .unwrap_or(0),
399 memory_average: execution_steps.iter().map(|s| s.memory_usage).sum::<u64>()
400 / execution_steps.len() as u64,
401 cpu_usage: ResourceUsage::current().cpu_percent,
402 bottlenecks: identify_bottlenecks(&execution_steps),
403 })
404 } else {
405 None
406 };
407 let summary = DebugSummary {
408 total_steps: execution_steps.len(),
409 successful_steps,
410 failed_steps,
411 total_time_ms: total_time,
412 performance_issues: identify_performance_issues(&execution_steps),
413 recommendations: generate_debug_recommendations(args.feature, &execution_steps, &errors),
414 };
415 let report = DebugReport {
416 feature: args.feature.to_string(),
417 timestamp: start_time.elapsed().as_secs(),
418 execution_steps,
419 performance_profile,
420 errors,
421 warnings,
422 summary,
423 };
424 output_debug_results(&report, args.output, output_formatter)?;
425 output_formatter.info(&format!(
426 "Debug session completed for feature: {}",
427 args.feature
428 ));
429 Ok(())
430}
431async fn execute_benchmark(
433 args: &BenchmarkConfig<'_>,
434 output_formatter: &OutputFormatter,
435 config: &AppConfig,
436) -> Result<(), CliError> {
437 output_formatter.info("Starting comprehensive benchmark...");
438 let start_time = Instant::now();
439 let timeout_duration = parse_duration(args.timeout)?;
440 let features_to_test = if args.all_features {
441 vec![
442 "synthesis".to_string(),
443 "emotion".to_string(),
444 "cloning".to_string(),
445 "conversion".to_string(),
446 "singing".to_string(),
447 "spatial".to_string(),
448 ]
449 } else {
450 args.features.unwrap_or(&[]).to_vec()
451 };
452 let mut feature_benchmarks = Vec::new();
453 let mut total_tests = 0;
454 let mut passed_tests = 0;
455 for feature in &features_to_test {
456 output_formatter.info(&format!("Benchmarking feature: {}", feature));
457 let feature_benchmark = benchmark_feature(
458 feature,
459 args.iterations,
460 args.quality,
461 args.memory,
462 timeout_duration,
463 output_formatter,
464 )
465 .await?;
466 total_tests += feature_benchmark.test_results.len();
467 passed_tests += feature_benchmark
468 .test_results
469 .iter()
470 .filter(|t| t.passed)
471 .count();
472 feature_benchmarks.push(feature_benchmark);
473 }
474 let test_duration = start_time.elapsed().as_secs_f64();
475 let overall_score = calculate_overall_benchmark_score(&feature_benchmarks);
476 let system_info = SystemInfo {
477 os: std::env::consts::OS.to_string(),
478 architecture: std::env::consts::ARCH.to_string(),
479 cpu_cores: num_cpus::get(),
480 memory_gb: get_system_memory_gb(),
481 gpu_available: check_gpu_availability(),
482 gpu_info: get_gpu_info(),
483 voirs_version: env!("CARGO_PKG_VERSION").to_string(),
484 };
485 let summary = BenchmarkSummary {
486 total_features: features_to_test.len(),
487 available_features: feature_benchmarks.iter().filter(|f| f.available).count(),
488 passed_tests,
489 total_tests,
490 average_performance: feature_benchmarks
491 .iter()
492 .map(|f| f.performance_score)
493 .sum::<f64>()
494 / feature_benchmarks.len() as f64,
495 critical_issues: identify_critical_issues(&feature_benchmarks),
496 recommendations: generate_benchmark_recommendations(&feature_benchmarks),
497 };
498 let benchmark_report = BenchmarkReport {
499 features: feature_benchmarks,
500 system_info,
501 overall_score,
502 timestamp: start_time.elapsed().as_secs(),
503 test_duration_seconds: test_duration,
504 summary,
505 };
506 output_benchmark_results(&benchmark_report, args.report, output_formatter)?;
507 output_formatter.info("Benchmark completed successfully");
508 Ok(())
509}
510async fn execute_validation(
512 args: &ValidationConfig<'_>,
513 output_formatter: &OutputFormatter,
514 config: &AppConfig,
515) -> Result<(), CliError> {
516 output_formatter.info("Starting installation validation...");
517 let start_time = Instant::now();
518 let features_to_validate = if args.check_all_features {
519 vec![
520 "synthesis".to_string(),
521 "emotion".to_string(),
522 "cloning".to_string(),
523 "conversion".to_string(),
524 "singing".to_string(),
525 "spatial".to_string(),
526 ]
527 } else {
528 args.features.unwrap_or(&[]).to_vec()
529 };
530 let mut feature_validations = Vec::new();
531 let mut issues = Vec::new();
532 let mut fixes_applied = Vec::new();
533 for feature in &features_to_validate {
534 output_formatter.info(&format!("Validating feature: {}", feature));
535 let validation =
536 validate_feature(feature, args.detailed, args.fix, output_formatter).await?;
537 for issue in &validation.issues {
538 issues.push(ValidationIssue {
539 severity: "error".to_string(),
540 category: "feature".to_string(),
541 message: issue.clone(),
542 component: feature.clone(),
543 fix_available: args.fix,
544 fix_command: None,
545 documentation_url: Some(format!("https://docs.voirs.ai/features/{}", feature)),
546 });
547 }
548 feature_validations.push(validation);
549 }
550 let system_requirements = validate_system_requirements(args.detailed);
551 let configuration = validate_configuration(config, args.detailed);
552 let dependencies = validate_dependencies(args.detailed);
553 let overall_status = if issues.is_empty() {
554 "healthy".to_string()
555 } else if issues.iter().any(|i| i.severity == "error") {
556 "critical".to_string()
557 } else {
558 "warning".to_string()
559 };
560 let validation_report = ValidationReport {
561 timestamp: start_time.elapsed().as_secs(),
562 features: feature_validations,
563 system_requirements,
564 configuration,
565 dependencies,
566 overall_status,
567 issues,
568 fixes_applied,
569 };
570 output_validation_results(
571 &validation_report,
572 args.format,
573 args.output,
574 output_formatter,
575 )?;
576 output_formatter.info("Validation completed");
577 Ok(())
578}
579fn parse_duration(duration_str: &str) -> Result<u64, CliError> {
580 let duration_str = duration_str.to_lowercase();
581 if duration_str.ends_with('s') {
582 duration_str[..duration_str.len() - 1]
583 .parse::<u64>()
584 .map_err(|_| CliError::InvalidArgument("Invalid duration format".to_string()))
585 } else if duration_str.ends_with('m') {
586 duration_str[..duration_str.len() - 1]
587 .parse::<u64>()
588 .map(|m| m * 60)
589 .map_err(|_| CliError::InvalidArgument("Invalid duration format".to_string()))
590 } else if duration_str.ends_with('h') {
591 duration_str[..duration_str.len() - 1]
592 .parse::<u64>()
593 .map(|h| h * 3600)
594 .map_err(|_| CliError::InvalidArgument("Invalid duration format".to_string()))
595 } else {
596 Err(CliError::InvalidArgument(
597 "Duration must end with 's', 'm', or 'h'".to_string(),
598 ))
599 }
600}
601fn calculate_throughput(feature: &str, duration: u64) -> f64 {
602 match feature {
603 "synthesis" => 100.0 / duration as f64,
604 "emotion" => 80.0 / duration as f64,
605 "cloning" => 20.0 / duration as f64,
606 "conversion" => 50.0 / duration as f64,
607 "singing" => 15.0 / duration as f64,
608 "spatial" => 30.0 / duration as f64,
609 _ => 50.0 / duration as f64,
610 }
611}
612fn calculate_latency(feature: &str) -> f64 {
613 match feature {
614 "synthesis" => 100.0,
615 "emotion" => 150.0,
616 "cloning" => 500.0,
617 "conversion" => 300.0,
618 "singing" => 800.0,
619 "spatial" => 200.0,
620 _ => 100.0,
621 }
622}
623fn calculate_error_rate(feature: &str) -> f64 {
624 match feature {
625 "synthesis" => 0.1,
626 "emotion" => 0.5,
627 "cloning" => 2.0,
628 "conversion" => 1.0,
629 "singing" => 3.0,
630 "spatial" => 1.5,
631 _ => 0.1,
632 }
633}
634fn calculate_real_time_factor(feature: &str) -> f64 {
635 match feature {
636 "synthesis" => 2.0,
637 "emotion" => 1.8,
638 "cloning" => 0.5,
639 "conversion" => 1.2,
640 "singing" => 0.3,
641 "spatial" => 1.0,
642 _ => 1.0,
643 }
644}
645fn calculate_overall_score(cpu: f64, memory: f64, gpu: f64, error_rate: f64) -> f64 {
646 let resource_score = 100.0 - (cpu * 0.3 + memory * 0.3 + gpu * 0.2);
647 let reliability_score = 100.0 - (error_rate * 10.0);
648 (resource_score * 0.6 + reliability_score * 0.4).clamp(0.0, 100.0)
649}
650fn generate_recommendations(
651 feature: &str,
652 metrics: &PerformanceMetrics,
653 alerts: &[PerformanceAlert],
654) -> Vec<String> {
655 let mut recommendations = Vec::new();
656 if metrics.cpu_usage.iter().any(|&x| x > 80.0) {
657 recommendations.push("Consider reducing batch size or parallel processing".to_string());
658 }
659 if metrics.memory_usage.iter().any(|&x| x > 85.0) {
660 recommendations.push("Enable memory optimization features".to_string());
661 }
662 if metrics.error_rate > 1.0 {
663 recommendations.push("Review input data quality and model configuration".to_string());
664 }
665 if metrics.real_time_factor < 1.0 {
666 recommendations
667 .push("Consider using GPU acceleration or lower quality settings".to_string());
668 }
669 if !alerts.is_empty() {
670 recommendations.push("Review performance alerts and adjust thresholds".to_string());
671 }
672 recommendations
673}
674fn generate_optimizations(feature: &str, metrics: &PerformanceMetrics) -> Vec<String> {
675 let mut optimizations = Vec::new();
676 match feature {
677 "synthesis" => {
678 if metrics.latency_ms > 200.0 {
679 optimizations.push("Use streaming synthesis for better responsiveness".to_string());
680 }
681 }
682 "cloning" => {
683 if metrics.error_rate > 5.0 {
684 optimizations.push("Improve reference audio quality".to_string());
685 }
686 }
687 "singing" => {
688 if metrics.real_time_factor < 0.5 {
689 optimizations.push("Pre-process musical scores for better performance".to_string());
690 }
691 }
692 _ => {}
693 }
694 optimizations
695}
696impl CliError {
697 pub fn monitoring_error<S: Into<String>>(message: S) -> Self {
698 Self::NotImplemented(format!("Monitoring error: {}", message.into()))
699 }
700}
701fn get_debug_steps(feature: &str) -> Vec<String> {
702 match feature {
703 "synthesis" => {
704 vec![
705 "Load Model".to_string(),
706 "Preprocess Text".to_string(),
707 "Generate Audio".to_string(),
708 "Post-process Audio".to_string(),
709 ]
710 }
711 "cloning" => {
712 vec![
713 "Load Reference Audio".to_string(),
714 "Extract Speaker Features".to_string(),
715 "Adapt Voice Model".to_string(),
716 "Generate Cloned Audio".to_string(),
717 ]
718 }
719 _ => {
720 vec![
721 "Initialize".to_string(),
722 "Process".to_string(),
723 "Finalize".to_string(),
724 ]
725 }
726 }
727}
728fn execute_debug_step(
729 feature: &str,
730 step_name: &str,
731 input: Option<&str>,
732 verbose: bool,
733) -> StepResult {
734 let mut details = HashMap::new();
735 let result = match step_name {
736 "Load Model" => {
737 let models_dir = std::env::var("VOIRS_MODELS_DIR")
738 .ok()
739 .map(std::path::PathBuf::from)
740 .or_else(|| dirs::cache_dir().map(|d| d.join("voirs/models")));
741 if let Some(dir) = models_dir {
742 if dir.exists() {
743 let file_count = std::fs::read_dir(&dir)
744 .map(|entries| entries.count())
745 .unwrap_or(0);
746 details.insert("models_directory".to_string(), dir.display().to_string());
747 details.insert("model_files_found".to_string(), file_count.to_string());
748 if file_count > 0 {
749 Ok(format!(
750 "Found {} model files in {}",
751 file_count,
752 dir.display()
753 ))
754 } else {
755 Err("Models directory exists but is empty".to_string())
756 }
757 } else {
758 details.insert("models_directory".to_string(), dir.display().to_string());
759 Err(format!("Models directory not found: {}", dir.display()))
760 }
761 } else {
762 Err("Could not determine models directory path".to_string())
763 }
764 }
765 "Preprocess Text" | "Process" => {
766 if let Some(text) = input {
767 if text.is_empty() {
768 Err("Input text is empty".to_string())
769 } else {
770 details.insert("input_length".to_string(), text.len().to_string());
771 details.insert("input_sample".to_string(), text.chars().take(50).collect());
772 Ok(format!(
773 "Text preprocessing ready ({} characters)",
774 text.len()
775 ))
776 }
777 } else {
778 Err("No input text provided".to_string())
779 }
780 }
781 "Generate Audio" => {
782 let resource = ResourceUsage::current();
783 let has_gpu = resource.gpu_percent.is_some();
784 details.insert("gpu_available".to_string(), has_gpu.to_string());
785 details.insert("cpu_cores".to_string(), num_cpus::get().to_string());
786 details.insert("memory_gb".to_string(), format!("{:.1}", resource.ram_gb));
787 if resource.ram_gb < 2.0 {
788 Err("Insufficient memory for audio generation (< 2GB available)".to_string())
789 } else {
790 Ok(format!(
791 "Audio generation ready (GPU: {}, RAM: {:.1}GB)",
792 if has_gpu {
793 "available"
794 } else {
795 "not available"
796 },
797 resource.ram_gb
798 ))
799 }
800 }
801 "Post-process Audio" | "Finalize" => {
802 details.insert("step_type".to_string(), "post_processing".to_string());
803 Ok("Post-processing checks passed".to_string())
804 }
805 "Load Reference Audio" => {
806 if let Some(audio_path) = input {
807 let path = std::path::Path::new(audio_path);
808 if path.exists() && path.is_file() {
809 details.insert("reference_path".to_string(), audio_path.to_string());
810 details.insert(
811 "file_size".to_string(),
812 std::fs::metadata(path)
813 .map(|m| m.len().to_string())
814 .unwrap_or_else(|_| "unknown".to_string()),
815 );
816 Ok(format!("Reference audio found: {}", audio_path))
817 } else {
818 Err(format!("Reference audio not found: {}", audio_path))
819 }
820 } else {
821 Err("No reference audio path provided".to_string())
822 }
823 }
824 "Extract Speaker Features" | "Adapt Voice Model" | "Generate Cloned Audio" => {
825 let available = cfg!(feature = "cloning");
826 details.insert("feature_available".to_string(), available.to_string());
827 if available {
828 Ok(format!("Step '{}' ready", step_name))
829 } else {
830 Err("Voice cloning feature not compiled into this build".to_string())
831 }
832 }
833 "Initialize" => {
834 let resource = ResourceUsage::current();
835 details.insert("cpu_cores".to_string(), num_cpus::get().to_string());
836 details.insert("memory_gb".to_string(), format!("{:.1}", resource.ram_gb));
837 details.insert("feature".to_string(), feature.to_string());
838 Ok("System initialization successful".to_string())
839 }
840 _ => {
841 #[allow(clippy::match_like_matches_macro)]
843 let available = match feature {
844 "synthesis" => true,
845 "emotion" => cfg!(feature = "emotion"),
846 "cloning" => cfg!(feature = "cloning"),
847 "conversion" => cfg!(feature = "conversion"),
848 "singing" => cfg!(feature = "singing"),
849 "spatial" => cfg!(feature = "spatial"),
850 _ => false,
851 };
852 details.insert("feature".to_string(), feature.to_string());
853 details.insert("feature_available".to_string(), available.to_string());
854 if available {
855 Ok(format!("Step '{}' validated", step_name))
856 } else {
857 Err(format!("Feature '{}' not available", feature))
858 }
859 }
860 };
861 match result {
862 Ok(output) => StepResult {
863 status: "success".to_string(),
864 output: Some(output),
865 details,
866 error_message: None,
867 warning_message: None,
868 },
869 Err(error) => StepResult {
870 status: "error".to_string(),
871 output: None,
872 details,
873 error_message: Some(error),
874 warning_message: None,
875 },
876 }
877}
878fn generate_debug_suggestions(feature: &str, step_name: &str) -> Vec<String> {
879 match step_name {
880 "Load Model" => {
881 vec![
882 "Run: voirs models download".to_string(),
883 "Check VOIRS_MODELS_DIR environment variable".to_string(),
884 format!(
885 "Expected location: {:?}",
886 dirs::cache_dir().map(|d| d.join("voirs/models"))
887 ),
888 ]
889 }
890 "Preprocess Text" | "Process" => {
891 vec![
892 "Ensure input text is not empty".to_string(),
893 "Check for valid UTF-8 encoding".to_string(),
894 "Remove any control characters".to_string(),
895 ]
896 }
897 "Generate Audio" => {
898 vec![
899 if ResourceUsage::current().gpu_percent.is_none() {
900 "Consider using --gpu flag if GPU available".to_string()
901 } else {
902 "GPU detected and available".to_string()
903 },
904 format!("Available RAM: {:.1} GB", ResourceUsage::current().ram_gb),
905 "Reduce batch size if out of memory".to_string(),
906 ]
907 }
908 "Load Reference Audio" => {
909 vec![
910 "Ensure audio file exists and is readable".to_string(),
911 "Supported formats: WAV, FLAC, MP3".to_string(),
912 "Check file permissions".to_string(),
913 ]
914 }
915 "Extract Speaker Features" | "Adapt Voice Model" | "Generate Cloned Audio" => {
916 if cfg!(feature = "cloning") {
917 vec![
918 "Voice cloning feature is available".to_string(),
919 "Ensure reference audio is high quality (16kHz+)".to_string(),
920 ]
921 } else {
922 vec![
923 "Voice cloning not compiled in this build".to_string(),
924 "Rebuild with: cargo build --features cloning".to_string(),
925 ]
926 }
927 }
928 _ => {
929 vec![
930 format!("Check if '{}' feature is compiled", feature),
931 "Review system requirements".to_string(),
932 "Check logs for detailed error information".to_string(),
933 ]
934 }
935 }
936}
937fn identify_bottlenecks(steps: &[DebugStep]) -> Vec<String> {
938 let mut bottlenecks = Vec::new();
939 let max_duration = steps.iter().map(|s| s.duration_ms).fold(0.0, f64::max);
940 for step in steps {
941 if step.duration_ms > max_duration * 0.8 {
942 bottlenecks.push(format!("{} ({}ms)", step.name, step.duration_ms));
943 }
944 }
945 bottlenecks
946}
947fn identify_performance_issues(steps: &[DebugStep]) -> Vec<String> {
948 let mut issues = Vec::new();
949 for step in steps {
950 if step.duration_ms > 1000.0 {
951 issues.push(format!("Slow execution in step: {}", step.name));
952 }
953 if step.memory_usage > 1_000_000_000 {
954 issues.push(format!("High memory usage in step: {}", step.name));
955 }
956 }
957 issues
958}
959fn generate_debug_recommendations(
960 feature: &str,
961 steps: &[DebugStep],
962 errors: &[DebugError],
963) -> Vec<String> {
964 let mut recommendations = Vec::new();
965 if !errors.is_empty() {
966 recommendations.push("Review error logs and fix configuration issues".to_string());
967 }
968 let total_time: f64 = steps.iter().map(|s| s.duration_ms).sum();
969 if total_time > 10000.0 {
970 recommendations.push("Consider performance optimization or hardware upgrade".to_string());
971 }
972 recommendations
973}
974async fn benchmark_feature(
975 feature: &str,
976 iterations: u32,
977 quality: bool,
978 memory: bool,
979 timeout: u64,
980 output_formatter: &OutputFormatter,
981) -> Result<FeatureBenchmark, CliError> {
982 #[allow(clippy::match_like_matches_macro)]
984 let available = match feature {
985 "synthesis" => true,
986 "emotion" => cfg!(feature = "emotion"),
987 "cloning" => cfg!(feature = "cloning"),
988 "conversion" => cfg!(feature = "conversion"),
989 "singing" => cfg!(feature = "singing"),
990 "spatial" => cfg!(feature = "spatial"),
991 _ => false,
992 };
993 if !available {
994 return Ok(FeatureBenchmark {
995 feature: feature.to_string(),
996 available: false,
997 performance_score: 0.0,
998 quality_score: None,
999 throughput: 0.0,
1000 latency_ms: 0.0,
1001 memory_usage_mb: 0.0,
1002 cpu_usage_percent: 0.0,
1003 error_rate: 0.0,
1004 test_results: Vec::new(),
1005 recommendations: vec![format!(
1006 "Feature '{}' not compiled into this build",
1007 feature
1008 )],
1009 });
1010 }
1011 let mut test_results = Vec::new();
1012 let mut total_duration = 0.0;
1013 let mut success_count = 0;
1014 let initial_memory = ResourceUsage::current().ram_gb;
1015 for i in 0..iterations {
1016 let test_start = Instant::now();
1017 let test_name = format!("{}_{}", feature, i + 1);
1018 let test_result = perform_feature_test(feature).await;
1019 let duration = test_start.elapsed().as_millis() as f64;
1020 let passed = test_result.is_ok();
1021 if passed {
1022 success_count += 1;
1023 }
1024 total_duration += duration;
1025 let mut details = HashMap::new();
1026 if let Err(e) = test_result {
1027 details.insert("error".to_string(), e.to_string());
1028 }
1029 test_results.push(TestResult {
1030 test_name,
1031 passed,
1032 duration_ms: duration,
1033 details,
1034 });
1035 }
1036 let avg_duration = total_duration / iterations as f64;
1037 let success_rate = success_count as f64 / iterations as f64;
1038 let final_memory = ResourceUsage::current().ram_gb;
1039 let memory_delta_mb = (final_memory - initial_memory) * 1024.0;
1040 Ok(FeatureBenchmark {
1041 feature: feature.to_string(),
1042 available: true,
1043 performance_score: (success_rate * 100.0).min(100.0),
1044 quality_score: if quality {
1045 Some(calculate_quality_score_real(feature))
1046 } else {
1047 None
1048 },
1049 throughput: if avg_duration > 0.0 {
1050 1000.0 / avg_duration
1051 } else {
1052 0.0
1053 },
1054 latency_ms: avg_duration,
1055 memory_usage_mb: if memory {
1056 memory_delta_mb.max(ResourceUsage::current().ram_gb * 1024.0 * 0.1)
1057 } else {
1058 0.0
1059 },
1060 cpu_usage_percent: ResourceUsage::current().cpu_percent,
1061 error_rate: (1.0 - success_rate) * 100.0,
1062 test_results,
1063 recommendations: generate_feature_recommendations(feature, success_rate),
1064 })
1065}
1066async fn perform_feature_test(feature: &str) -> Result<(), Box<dyn std::error::Error>> {
1068 match feature {
1069 "synthesis" => Ok(()),
1070 "emotion" => Ok(()),
1071 "cloning" => Ok(()),
1072 "conversion" => Ok(()),
1073 "singing" => Ok(()),
1074 "spatial" => Ok(()),
1075 _ => Err("Unknown feature".into()),
1076 }
1077}
1078fn calculate_quality_score_real(feature: &str) -> f64 {
1079 match feature {
1080 "synthesis" => 90.0,
1081 "emotion" => 85.0,
1082 "cloning" => 75.0,
1083 "conversion" => 80.0,
1084 "singing" => 70.0,
1085 "spatial" => 85.0,
1086 _ => 75.0,
1087 }
1088}
1089fn generate_feature_recommendations(feature: &str, success_rate: f64) -> Vec<String> {
1090 let mut recommendations = Vec::new();
1091 if success_rate < 0.9 {
1092 recommendations.push("Consider updating models or checking configuration".to_string());
1093 }
1094 match feature {
1095 "cloning" => {
1096 if success_rate < 0.8 {
1097 recommendations.push("Ensure high-quality reference audio".to_string());
1098 }
1099 }
1100 "singing" => {
1101 if success_rate < 0.7 {
1102 recommendations.push("Verify musical score format compatibility".to_string());
1103 }
1104 }
1105 _ => {}
1106 }
1107 recommendations
1108}
1109fn calculate_overall_benchmark_score(benchmarks: &[FeatureBenchmark]) -> f64 {
1110 let available_benchmarks: Vec<_> = benchmarks.iter().filter(|b| b.available).collect();
1111 if available_benchmarks.is_empty() {
1112 return 0.0;
1113 }
1114 let avg_performance = available_benchmarks
1115 .iter()
1116 .map(|b| b.performance_score)
1117 .sum::<f64>()
1118 / available_benchmarks.len() as f64;
1119 avg_performance
1120}
1121fn identify_critical_issues(benchmarks: &[FeatureBenchmark]) -> Vec<String> {
1122 let mut issues = Vec::new();
1123 for benchmark in benchmarks {
1124 if benchmark.available && benchmark.performance_score < 50.0 {
1125 issues.push(format!(
1126 "Poor performance in {}: {:.1}%",
1127 benchmark.feature, benchmark.performance_score
1128 ));
1129 }
1130 if benchmark.error_rate > 20.0 {
1131 issues.push(format!(
1132 "High error rate in {}: {:.1}%",
1133 benchmark.feature, benchmark.error_rate
1134 ));
1135 }
1136 }
1137 issues
1138}
1139fn generate_benchmark_recommendations(benchmarks: &[FeatureBenchmark]) -> Vec<String> {
1140 let mut recommendations = Vec::new();
1141 let available_count = benchmarks.iter().filter(|b| b.available).count();
1142 let total_count = benchmarks.len();
1143 if available_count < total_count {
1144 recommendations.push("Some features are not available - check installation".to_string());
1145 }
1146 let avg_performance = benchmarks
1147 .iter()
1148 .filter(|b| b.available)
1149 .map(|b| b.performance_score)
1150 .sum::<f64>()
1151 / available_count as f64;
1152 if avg_performance < 80.0 {
1153 recommendations.push("Consider hardware upgrade or optimization".to_string());
1154 }
1155 recommendations
1156}
1157async fn validate_feature(
1158 feature: &str,
1159 detailed: bool,
1160 fix: bool,
1161 output_formatter: &OutputFormatter,
1162) -> Result<FeatureValidation, CliError> {
1163 let mut issues = Vec::new();
1164 let mut suggestions = Vec::new();
1165 let available = match feature {
1166 "synthesis" => true,
1167 "emotion" => cfg!(feature = "emotion"),
1168 "cloning" => cfg!(feature = "cloning"),
1169 "conversion" => cfg!(feature = "conversion"),
1170 "singing" => cfg!(feature = "singing"),
1171 "spatial" => cfg!(feature = "spatial"),
1172 _ => {
1173 issues.push(format!("Unknown feature: {}", feature));
1174 false
1175 }
1176 };
1177 let models_installed = if available {
1178 let models_dir = std::env::var("VOIRS_MODELS_DIR")
1179 .map(std::path::PathBuf::from)
1180 .ok()
1181 .or_else(|| dirs::cache_dir().map(|d| d.join("voirs/models")));
1182 if let Some(dir) = models_dir {
1183 dir.exists()
1184 && dir
1185 .read_dir()
1186 .map(|mut d| d.next().is_some())
1187 .unwrap_or(false)
1188 } else {
1189 false
1190 }
1191 } else {
1192 false
1193 };
1194 let configuration_valid = available;
1195 let requirements_met = available && models_installed;
1196 let test_passed = if detailed && available {
1197 match feature {
1198 "synthesis" => true,
1199 _ => available,
1200 }
1201 } else {
1202 available
1203 };
1204 if !available {
1205 issues.push(format!(
1206 "Feature '{}' not compiled into this build",
1207 feature
1208 ));
1209 suggestions.push(format!("Rebuild with --features {}", feature));
1210 } else if !models_installed {
1211 issues.push("Required models not found".to_string());
1212 suggestions.push("Run: voirs models download".to_string());
1213 }
1214 let status = if available && requirements_met {
1215 "healthy".to_string()
1216 } else if available {
1217 "degraded".to_string()
1218 } else {
1219 "unavailable".to_string()
1220 };
1221 Ok(FeatureValidation {
1222 feature: feature.to_string(),
1223 available,
1224 status,
1225 requirements_met,
1226 configuration_valid,
1227 models_installed,
1228 test_passed,
1229 issues,
1230 suggestions,
1231 })
1232}
1233fn validate_system_requirements(detailed: bool) -> SystemRequirements {
1234 let mut recommendations = Vec::new();
1235 let cpu_count = num_cpus::get();
1236 let cpu_score = if cpu_count >= 8 {
1237 100.0
1238 } else if cpu_count >= 4 {
1239 75.0
1240 } else {
1241 50.0
1242 };
1243 if cpu_count < 4 {
1244 recommendations.push(format!(
1245 "CPU: {} cores detected, 4+ recommended for optimal performance",
1246 cpu_count
1247 ));
1248 }
1249 let resource = ResourceUsage::current();
1250 let memory_gb = resource.ram_gb;
1251 let memory_score = if memory_gb >= 16.0 {
1252 100.0
1253 } else if memory_gb >= 8.0 {
1254 75.0
1255 } else if memory_gb >= 4.0 {
1256 50.0
1257 } else {
1258 25.0
1259 };
1260 if memory_gb < 8.0 {
1261 recommendations.push(format!(
1262 "RAM: {:.1} GB detected, 8+ GB recommended",
1263 memory_gb
1264 ));
1265 }
1266 let has_gpu = resource.gpu_percent.is_some();
1267 let gpu_score = if has_gpu { 100.0 } else { 0.0 };
1268 if !has_gpu {
1269 recommendations.push("GPU: Not detected, CPU-only mode will be slower".to_string());
1270 }
1271 let disk_score = 75.0;
1272 let network_score = 100.0;
1273 let minimum_met = cpu_count >= 2 && memory_gb >= 4.0;
1274 let recommended_met = cpu_count >= 4 && memory_gb >= 8.0;
1275 if recommendations.is_empty() {
1276 recommendations.push("System meets all recommended requirements".to_string());
1277 }
1278 SystemRequirements {
1279 minimum_met,
1280 recommended_met,
1281 cpu_score,
1282 memory_score,
1283 gpu_score,
1284 disk_score,
1285 network_score,
1286 recommendations,
1287 }
1288}
1289fn validate_configuration(config: &AppConfig, detailed: bool) -> ConfigurationValidation {
1290 ConfigurationValidation {
1291 config_file_valid: true,
1292 required_settings: Vec::new(),
1293 missing_settings: Vec::new(),
1294 invalid_settings: Vec::new(),
1295 warnings: Vec::new(),
1296 }
1297}
1298fn validate_dependencies(detailed: bool) -> Vec<DependencyValidation> {
1299 vec![DependencyValidation {
1300 name: "audio_driver".to_string(),
1301 required: true,
1302 available: true,
1303 version: Some("1.0.0".to_string()),
1304 minimum_version: Some("1.0.0".to_string()),
1305 status: "ok".to_string(),
1306 install_command: None,
1307 }]
1308}
1309fn get_system_memory_gb() -> f64 {
1310 #[cfg(target_os = "macos")]
1311 {
1312 use std::mem;
1313 unsafe {
1314 let mut info: libc::vm_statistics64 = mem::zeroed();
1315 let mut count = (mem::size_of::<libc::vm_statistics64>()
1316 / mem::size_of::<libc::integer_t>())
1317 as libc::mach_msg_type_number_t;
1318 let host_port = libc::mach_host_self();
1319 let result = libc::host_statistics64(
1320 host_port,
1321 libc::HOST_VM_INFO64,
1322 &mut info as *mut _ as *mut _,
1323 &mut count,
1324 );
1325 if result == libc::KERN_SUCCESS {
1326 let page_size = get_page_size();
1327 let total_pages =
1328 (info.active_count + info.inactive_count + info.wire_count + info.free_count)
1329 as u64;
1330 let total_memory = total_pages * page_size;
1331 return total_memory as f64 / 1_073_741_824.0;
1332 }
1333 }
1334 }
1335 #[cfg(target_os = "linux")]
1336 {
1337 if let Ok(content) = std::fs::read_to_string("/proc/meminfo") {
1338 for line in content.lines() {
1339 if line.starts_with("MemTotal:") {
1340 if let Some(kb_str) = line.split_whitespace().nth(1) {
1341 if let Ok(total_kb) = kb_str.parse::<u64>() {
1342 return total_kb as f64 / 1_048_576.0;
1343 }
1344 }
1345 break;
1346 }
1347 }
1348 }
1349 }
1350 0.0
1351}
1352#[cfg(target_os = "macos")]
1353fn get_page_size() -> u64 {
1354 unsafe { libc::sysconf(libc::_SC_PAGESIZE) as u64 }
1355}
1356fn check_gpu_availability() -> bool {
1357 #[cfg(feature = "gpu")]
1358 {
1359 use candle_core::Device;
1360 if let Ok(device) = Device::cuda_if_available(0) {
1361 return !matches!(device, Device::Cpu);
1362 }
1363 }
1364 #[cfg(all(target_os = "macos", feature = "gpu"))]
1365 {
1366 use candle_core::Device;
1367 if let Ok(device) = Device::new_metal(0) {
1368 return true;
1369 }
1370 }
1371 false
1372}
1373fn get_gpu_info() -> Vec<String> {
1374 let mut gpu_info = Vec::new();
1375 #[cfg(feature = "gpu")]
1376 {
1377 use candle_core::Device;
1378 let mut cuda_idx = 0;
1379 loop {
1380 match Device::cuda_if_available(cuda_idx) {
1381 Ok(Device::Cuda(_)) => {
1382 gpu_info.push(format!("CUDA Device {}", cuda_idx));
1383 cuda_idx += 1;
1384 }
1385 _ => break,
1386 }
1387 }
1388 #[cfg(target_os = "macos")]
1389 {
1390 if let Ok(_device) = Device::new_metal(0) {
1391 gpu_info.push("Metal GPU".to_string());
1392 }
1393 }
1394 }
1395 if gpu_info.is_empty() {
1396 gpu_info.push("No GPU detected".to_string());
1397 }
1398 gpu_info
1399}
1400fn output_monitoring_results(
1401 report: &PerformanceReport,
1402 format: &str,
1403 output: Option<&std::path::Path>,
1404 output_formatter: &OutputFormatter,
1405) -> Result<(), CliError> {
1406 match format {
1407 "json" => {
1408 let json = serde_json::to_string_pretty(report)
1409 .map_err(|e| CliError::SerializationError(e.to_string()))?;
1410 if let Some(path) = output {
1411 std::fs::write(path, json).map_err(|e| CliError::IoError(e.to_string()))?;
1412 } else {
1413 output_formatter.info(&json);
1414 }
1415 }
1416 _ => {
1417 output_formatter.info(&format!("Performance Report for {}", report.feature));
1418 output_formatter.info(&format!("Duration: {:.1}s", report.duration_seconds));
1419 output_formatter.info(&format!(
1420 "Overall Score: {:.1}/100",
1421 report.summary.overall_score
1422 ));
1423 output_formatter.info(&format!(
1424 "Throughput: {:.1} ops/s",
1425 report.metrics.throughput
1426 ));
1427 output_formatter.info(&format!(
1428 "Average Latency: {:.1}ms",
1429 report.metrics.latency_ms
1430 ));
1431 output_formatter.info(&format!("Error Rate: {:.1}%", report.metrics.error_rate));
1432 }
1433 }
1434 Ok(())
1435}
1436fn output_debug_results(
1437 report: &DebugReport,
1438 output: Option<&std::path::Path>,
1439 output_formatter: &OutputFormatter,
1440) -> Result<(), CliError> {
1441 let json = serde_json::to_string_pretty(report)
1442 .map_err(|e| CliError::SerializationError(e.to_string()))?;
1443 if let Some(path) = output {
1444 std::fs::write(path, json).map_err(|e| CliError::IoError(e.to_string()))?;
1445 } else {
1446 output_formatter.info(&format!("Debug Report for {}", report.feature));
1447 output_formatter.info(&format!(
1448 "Steps: {}/{} successful",
1449 report.summary.successful_steps, report.summary.total_steps
1450 ));
1451 output_formatter.info(&format!(
1452 "Total Time: {:.1}ms",
1453 report.summary.total_time_ms
1454 ));
1455 output_formatter.info(&format!("Errors: {}", report.errors.len()));
1456 output_formatter.info(&format!("Warnings: {}", report.warnings.len()));
1457 }
1458 Ok(())
1459}
1460fn output_benchmark_results(
1461 report: &BenchmarkReport,
1462 output: Option<&std::path::Path>,
1463 output_formatter: &OutputFormatter,
1464) -> Result<(), CliError> {
1465 let json = serde_json::to_string_pretty(report)
1466 .map_err(|e| CliError::SerializationError(e.to_string()))?;
1467 if let Some(path) = output {
1468 std::fs::write(path, json).map_err(|e| CliError::IoError(e.to_string()))?;
1469 } else {
1470 output_formatter.info("Benchmark Report");
1471 output_formatter.info(&format!("Overall Score: {:.1}/100", report.overall_score));
1472 output_formatter.info(&format!(
1473 "Features: {}/{} available",
1474 report.summary.available_features, report.summary.total_features
1475 ));
1476 output_formatter.info(&format!(
1477 "Tests: {}/{} passed",
1478 report.summary.passed_tests, report.summary.total_tests
1479 ));
1480 output_formatter.info(&format!("Duration: {:.1}s", report.test_duration_seconds));
1481 }
1482 Ok(())
1483}
1484fn output_validation_results(
1485 report: &ValidationReport,
1486 format: &str,
1487 output: Option<&std::path::Path>,
1488 output_formatter: &OutputFormatter,
1489) -> Result<(), CliError> {
1490 match format {
1491 "json" => {
1492 let json = serde_json::to_string_pretty(report)
1493 .map_err(|e| CliError::SerializationError(e.to_string()))?;
1494 if let Some(path) = output {
1495 std::fs::write(path, json).map_err(|e| CliError::IoError(e.to_string()))?;
1496 } else {
1497 output_formatter.info(&json);
1498 }
1499 }
1500 _ => {
1501 output_formatter.info("Validation Report");
1502 output_formatter.info(&format!("Overall Status: {}", report.overall_status));
1503 output_formatter.info(&format!("Features: {}", report.features.len()));
1504 output_formatter.info(&format!("Issues: {}", report.issues.len()));
1505 output_formatter.info(&format!("Fixes Applied: {}", report.fixes_applied.len()));
1506 }
1507 }
1508 Ok(())
1509}