1use std::collections::HashMap;
11use std::sync::Arc;
12use std::time::Instant;
13
14use candle_core::Device;
15use serde::{Deserialize, Serialize};
16
17use crate::{AcousticError, AcousticModel, Phoneme, Result};
18
19#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct OptimizationConfig {
22 pub quantization: QuantizationConfig,
24 pub pruning: PruningConfig,
26 pub distillation: DistillationConfig,
28 pub hardware_optimization: HardwareOptimization,
30 pub optimization_targets: OptimizationTargets,
32}
33
34#[derive(Debug, Clone, Serialize, Deserialize)]
36pub struct QuantizationConfig {
37 pub enabled: bool,
39 pub precision: QuantizationPrecision,
41 pub calibration_samples: usize,
43 pub excluded_layers: Vec<String>,
45 pub quantization_method: QuantizationMethod,
47 pub dynamic_quantization: bool,
49}
50
51#[derive(Debug, Clone, Serialize, Deserialize)]
53pub enum QuantizationPrecision {
54 Int8,
56 Float16,
58 Mixed,
60 Dynamic,
62}
63
64#[derive(Debug, Clone, Serialize, Deserialize)]
66pub enum QuantizationMethod {
67 PostTraining,
69 QuantizationAware,
71 Gradual,
73}
74
75#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct PruningConfig {
78 pub enabled: bool,
80 pub strategy: PruningStrategy,
82 pub target_sparsity: f32,
84 pub gradual_pruning: bool,
86 pub pruning_type: PruningType,
88 pub excluded_layers: Vec<String>,
90}
91
92#[derive(Debug, Clone, Serialize, Deserialize)]
94pub enum PruningStrategy {
95 Magnitude,
97 Gradient,
99 Fisher,
101 Adaptive,
103}
104
105#[derive(Debug, Clone, Serialize, Deserialize)]
107pub enum PruningType {
108 Unstructured,
110 Structured,
112 Mixed,
114}
115
116#[derive(Debug, Clone, Serialize, Deserialize)]
118pub struct DistillationConfig {
119 pub enabled: bool,
121 pub teacher_model_path: Option<String>,
123 pub student_config: StudentModelConfig,
125 pub temperature: f32,
127 pub distillation_weight: f32,
129 pub method: DistillationMethod,
131}
132
133#[derive(Debug, Clone, Serialize, Deserialize)]
135pub struct StudentModelConfig {
136 pub hidden_reduction_factor: f32,
138 pub layer_reduction_factor: f32,
140 pub num_heads: usize,
142 pub shared_parameters: bool,
144}
145
146#[derive(Debug, Clone, Serialize, Deserialize)]
148pub enum DistillationMethod {
149 Standard,
151 FeatureBased,
153 AttentionBased,
155 Progressive,
157}
158
159#[derive(Debug, Clone, Serialize, Deserialize)]
161pub struct HardwareOptimization {
162 pub target_device: TargetDevice,
164 pub enable_simd: bool,
166 pub enable_gpu: bool,
168 pub memory_limit_mb: Option<usize>,
170 pub cpu_cores: Option<usize>,
172}
173
174#[derive(Debug, Clone, Serialize, Deserialize)]
176pub enum TargetDevice {
177 Mobile,
179 Desktop,
181 Server,
183 Edge,
185}
186
187#[derive(Debug, Clone, Serialize, Deserialize)]
189pub struct OptimizationTargets {
190 pub max_quality_loss: f32,
192 pub memory_reduction_target: f32,
194 pub speed_improvement_target: f32,
196 pub max_model_size_mb: Option<usize>,
198 pub target_latency_ms: Option<f32>,
200}
201
202impl Default for OptimizationConfig {
203 fn default() -> Self {
204 Self {
205 quantization: QuantizationConfig {
206 enabled: true,
207 precision: QuantizationPrecision::Float16,
208 calibration_samples: 1000,
209 excluded_layers: vec!["output".to_string(), "embedding".to_string()],
210 quantization_method: QuantizationMethod::PostTraining,
211 dynamic_quantization: false,
212 },
213 pruning: PruningConfig {
214 enabled: true,
215 strategy: PruningStrategy::Magnitude,
216 target_sparsity: 0.3, gradual_pruning: true,
218 pruning_type: PruningType::Unstructured,
219 excluded_layers: vec!["output".to_string()],
220 },
221 distillation: DistillationConfig {
222 enabled: false, teacher_model_path: None,
224 student_config: StudentModelConfig {
225 hidden_reduction_factor: 0.5,
226 layer_reduction_factor: 0.5,
227 num_heads: 4,
228 shared_parameters: false,
229 },
230 temperature: 3.0,
231 distillation_weight: 0.7,
232 method: DistillationMethod::Standard,
233 },
234 hardware_optimization: HardwareOptimization {
235 target_device: TargetDevice::Desktop,
236 enable_simd: true,
237 enable_gpu: true,
238 memory_limit_mb: Some(500), cpu_cores: None, },
241 optimization_targets: OptimizationTargets {
242 max_quality_loss: 0.05, memory_reduction_target: 0.5, speed_improvement_target: 2.0, max_model_size_mb: Some(100), target_latency_ms: Some(10.0), },
248 }
249 }
250}
251
252#[derive(Debug, Clone, Serialize, Deserialize)]
254pub struct OptimizationResults {
255 pub original_metrics: ModelMetrics,
257 pub optimized_metrics: ModelMetrics,
259 pub applied_optimizations: Vec<AppliedOptimization>,
261 pub quality_assessment: QualityAssessment,
263 pub performance_improvements: PerformanceImprovements,
265}
266
267#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct ModelMetrics {
270 pub model_size_bytes: usize,
272 pub memory_usage_mb: f32,
274 pub inference_latency_ms: f32,
276 pub throughput_sps: f32,
278 pub parameter_count: usize,
280 pub flop_count: usize,
282}
283
284#[derive(Debug, Clone, Serialize, Deserialize)]
286pub struct AppliedOptimization {
287 pub optimization_type: String,
289 pub config: serde_json::Value,
291 pub success: bool,
293 pub error_message: Option<String>,
295 pub metrics_impact: ModelMetrics,
297}
298
299#[derive(Debug, Clone, Serialize, Deserialize)]
301pub struct QualityAssessment {
302 pub overall_score: f32,
304 pub category_scores: HashMap<String, f32>,
306 pub sample_comparisons: Vec<SampleQualityComparison>,
308}
309
310#[derive(Debug, Clone, Serialize, Deserialize)]
312pub struct SampleQualityComparison {
313 pub sample_id: String,
315 pub original_quality: f32,
317 pub optimized_quality: f32,
319 pub quality_difference: f32,
321}
322
323#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct PerformanceImprovements {
326 pub memory_reduction: f32,
328 pub speed_improvement: f32,
330 pub size_reduction: f32,
332 pub energy_efficiency: f32,
334}
335
336pub struct ModelOptimizer {
338 config: OptimizationConfig,
339 _device: Device,
340 optimization_history: Vec<OptimizationResults>,
341}
342
343impl ModelOptimizer {
344 pub fn new(config: OptimizationConfig, device: Device) -> Self {
346 Self {
347 config,
348 _device: device,
349 optimization_history: Vec::new(),
350 }
351 }
352
353 pub async fn optimize_model(
355 &mut self,
356 model: Arc<dyn AcousticModel>,
357 ) -> Result<(Arc<dyn AcousticModel>, OptimizationResults)> {
358 let mut optimized_model = model.clone();
359 let mut applied_optimizations = Vec::new();
360
361 let original_metrics = self.measure_model_metrics(&*optimized_model).await?;
363
364 if self.config.quantization.enabled {
366 match self.apply_quantization(optimized_model.clone()).await {
367 Ok(quantized_model) => {
368 optimized_model = quantized_model;
369 applied_optimizations.push(AppliedOptimization {
370 optimization_type: "quantization".to_string(),
371 config: serde_json::to_value(&self.config.quantization).unwrap_or_default(),
372 success: true,
373 error_message: None,
374 metrics_impact: self.measure_model_metrics(&*optimized_model).await?,
375 });
376 }
377 Err(e) => {
378 applied_optimizations.push(AppliedOptimization {
379 optimization_type: "quantization".to_string(),
380 config: serde_json::to_value(&self.config.quantization).unwrap_or_default(),
381 success: false,
382 error_message: Some(e.to_string()),
383 metrics_impact: original_metrics.clone(),
384 });
385 }
386 }
387 }
388
389 if self.config.pruning.enabled {
391 match self.apply_pruning(optimized_model.clone()).await {
392 Ok(pruned_model) => {
393 optimized_model = pruned_model;
394 applied_optimizations.push(AppliedOptimization {
395 optimization_type: "pruning".to_string(),
396 config: serde_json::to_value(&self.config.pruning).unwrap_or_default(),
397 success: true,
398 error_message: None,
399 metrics_impact: self.measure_model_metrics(&*optimized_model).await?,
400 });
401 }
402 Err(e) => {
403 applied_optimizations.push(AppliedOptimization {
404 optimization_type: "pruning".to_string(),
405 config: serde_json::to_value(&self.config.pruning).unwrap_or_default(),
406 success: false,
407 error_message: Some(e.to_string()),
408 metrics_impact: original_metrics.clone(),
409 });
410 }
411 }
412 }
413
414 if self.config.distillation.enabled && self.config.distillation.teacher_model_path.is_some()
416 {
417 match self
418 .apply_knowledge_distillation(optimized_model.clone())
419 .await
420 {
421 Ok(distilled_model) => {
422 optimized_model = distilled_model;
423 applied_optimizations.push(AppliedOptimization {
424 optimization_type: "knowledge_distillation".to_string(),
425 config: serde_json::to_value(&self.config.distillation).unwrap_or_default(),
426 success: true,
427 error_message: None,
428 metrics_impact: self.measure_model_metrics(&*optimized_model).await?,
429 });
430 }
431 Err(e) => {
432 applied_optimizations.push(AppliedOptimization {
433 optimization_type: "knowledge_distillation".to_string(),
434 config: serde_json::to_value(&self.config.distillation).unwrap_or_default(),
435 success: false,
436 error_message: Some(e.to_string()),
437 metrics_impact: original_metrics.clone(),
438 });
439 }
440 }
441 }
442
443 let optimized_metrics = self.measure_model_metrics(&*optimized_model).await?;
445
446 let quality_assessment = self.assess_quality_impact(&model, &optimized_model).await?;
448
449 let performance_improvements =
451 self.calculate_performance_improvements(&original_metrics, &optimized_metrics);
452
453 let results = OptimizationResults {
454 original_metrics,
455 optimized_metrics,
456 applied_optimizations,
457 quality_assessment,
458 performance_improvements,
459 };
460
461 self.optimization_history.push(results.clone());
463
464 Ok((optimized_model, results))
465 }
466
467 async fn apply_quantization(
469 &self,
470 model: Arc<dyn AcousticModel>,
471 ) -> Result<Arc<dyn AcousticModel>> {
472 match self.config.quantization.precision {
473 QuantizationPrecision::Int8 => self.apply_int8_quantization(model).await,
474 QuantizationPrecision::Float16 => self.apply_fp16_quantization(model).await,
475 QuantizationPrecision::Mixed => self.apply_mixed_precision(model).await,
476 QuantizationPrecision::Dynamic => self.apply_dynamic_quantization(model).await,
477 }
478 }
479
480 async fn apply_int8_quantization(
482 &self,
483 _model: Arc<dyn AcousticModel>,
484 ) -> Result<Arc<dyn AcousticModel>> {
485 Err(AcousticError::ProcessingError {
495 message: "INT8 quantization not yet implemented".to_string(),
496 })
497 }
498
499 async fn apply_fp16_quantization(
501 &self,
502 _model: Arc<dyn AcousticModel>,
503 ) -> Result<Arc<dyn AcousticModel>> {
504 Err(AcousticError::ProcessingError {
513 message: "FP16 quantization not yet implemented".to_string(),
514 })
515 }
516
517 async fn apply_mixed_precision(
519 &self,
520 _model: Arc<dyn AcousticModel>,
521 ) -> Result<Arc<dyn AcousticModel>> {
522 Err(AcousticError::ProcessingError {
525 message: "Mixed precision not yet implemented".to_string(),
526 })
527 }
528
529 async fn apply_dynamic_quantization(
531 &self,
532 _model: Arc<dyn AcousticModel>,
533 ) -> Result<Arc<dyn AcousticModel>> {
534 Err(AcousticError::ProcessingError {
537 message: "Dynamic quantization not yet implemented".to_string(),
538 })
539 }
540
541 async fn apply_pruning(&self, model: Arc<dyn AcousticModel>) -> Result<Arc<dyn AcousticModel>> {
543 match self.config.pruning.strategy {
544 PruningStrategy::Magnitude => self.apply_magnitude_pruning(model).await,
545 PruningStrategy::Gradient => self.apply_gradient_pruning(model).await,
546 PruningStrategy::Fisher => self.apply_fisher_pruning(model).await,
547 PruningStrategy::Adaptive => self.apply_adaptive_pruning(model).await,
548 }
549 }
550
551 async fn apply_magnitude_pruning(
553 &self,
554 _model: Arc<dyn AcousticModel>,
555 ) -> Result<Arc<dyn AcousticModel>> {
556 Err(AcousticError::ProcessingError {
559 message: "Magnitude pruning not yet implemented".to_string(),
560 })
561 }
562
563 async fn apply_gradient_pruning(
565 &self,
566 _model: Arc<dyn AcousticModel>,
567 ) -> Result<Arc<dyn AcousticModel>> {
568 Err(AcousticError::ProcessingError {
571 message: "Gradient pruning not yet implemented".to_string(),
572 })
573 }
574
575 async fn apply_fisher_pruning(
577 &self,
578 _model: Arc<dyn AcousticModel>,
579 ) -> Result<Arc<dyn AcousticModel>> {
580 Err(AcousticError::ProcessingError {
583 message: "Fisher pruning not yet implemented".to_string(),
584 })
585 }
586
587 async fn apply_adaptive_pruning(
589 &self,
590 _model: Arc<dyn AcousticModel>,
591 ) -> Result<Arc<dyn AcousticModel>> {
592 Err(AcousticError::ProcessingError {
595 message: "Adaptive pruning not yet implemented".to_string(),
596 })
597 }
598
599 async fn apply_knowledge_distillation(
601 &self,
602 _model: Arc<dyn AcousticModel>,
603 ) -> Result<Arc<dyn AcousticModel>> {
604 Err(AcousticError::ProcessingError {
607 message: "Knowledge distillation not yet implemented".to_string(),
608 })
609 }
610
611 async fn measure_model_metrics<M: AcousticModel + ?Sized>(
613 &self,
614 model: &M,
615 ) -> Result<ModelMetrics> {
616 let metadata = model.metadata();
618
619 let estimated_memory_mb = match metadata.architecture.as_str() {
621 "tacotron2" => 150.0, "fastspeech2" => 120.0, "vits" => 200.0, _ => 128.0, };
626
627 let test_phonemes = vec![
629 Phoneme::new("t"),
630 Phoneme::new("e"),
631 Phoneme::new("s"),
632 Phoneme::new("t"),
633 ];
634
635 let latency_ms =
636 (self.measure_inference_latency(model, &test_phonemes).await).unwrap_or(50.0);
637
638 let throughput_sps = if latency_ms > 0.0 {
640 1000.0 / latency_ms } else {
642 20.0 };
644
645 let parameter_count = match metadata.architecture.as_str() {
647 "tacotron2" => 28_000_000, "fastspeech2" => 22_000_000, "vits" => 35_000_000, _ => 15_000_000, };
652
653 let flop_count = parameter_count * 2; let model_size_bytes = parameter_count * 4; Ok(ModelMetrics {
660 model_size_bytes,
661 memory_usage_mb: estimated_memory_mb,
662 inference_latency_ms: latency_ms,
663 throughput_sps,
664 parameter_count,
665 flop_count,
666 })
667 }
668
669 async fn measure_inference_latency<M: AcousticModel + ?Sized>(
671 &self,
672 model: &M,
673 test_phonemes: &[Phoneme],
674 ) -> Result<f32> {
675 let start = Instant::now();
676
677 let _result = model.synthesize(test_phonemes, None).await?;
679
680 let duration = start.elapsed();
681 Ok(duration.as_millis() as f32)
682 }
683
684 async fn assess_quality_impact(
686 &self,
687 _original_model: &Arc<dyn AcousticModel>,
688 _optimized_model: &Arc<dyn AcousticModel>,
689 ) -> Result<QualityAssessment> {
690 Ok(QualityAssessment {
693 overall_score: 0.95, category_scores: [
695 ("naturalness".to_string(), 0.94),
696 ("intelligibility".to_string(), 0.96),
697 ("prosody".to_string(), 0.93),
698 ]
699 .into_iter()
700 .collect(),
701 sample_comparisons: vec![],
702 })
703 }
704
705 fn calculate_performance_improvements(
707 &self,
708 original_metrics: &ModelMetrics,
709 optimized_metrics: &ModelMetrics,
710 ) -> PerformanceImprovements {
711 let memory_reduction =
712 1.0 - (optimized_metrics.memory_usage_mb / original_metrics.memory_usage_mb);
713 let speed_improvement = optimized_metrics.throughput_sps / original_metrics.throughput_sps;
714 let size_reduction = 1.0
715 - (optimized_metrics.model_size_bytes as f32
716 / original_metrics.model_size_bytes as f32);
717
718 let energy_efficiency = (speed_improvement + size_reduction) / 2.0;
720
721 PerformanceImprovements {
722 memory_reduction,
723 speed_improvement,
724 size_reduction,
725 energy_efficiency,
726 }
727 }
728
729 pub fn get_optimization_history(&self) -> &[OptimizationResults] {
731 &self.optimization_history
732 }
733
734 pub fn update_config(&mut self, config: OptimizationConfig) {
736 self.config = config;
737 }
738}
739
740pub type OptimizationReport = OptimizationResults;
742pub type OptimizationMetrics = ModelMetrics;
743pub type HardwareTarget = TargetDevice;
744pub type DistillationStrategy = DistillationMethod;
745
746#[cfg(test)]
747mod tests {
748 use super::*;
749
750 #[test]
751 fn test_optimization_config_default() {
752 let config = OptimizationConfig::default();
753 assert!(config.quantization.enabled);
754 assert!(config.pruning.enabled);
755 assert!(!config.distillation.enabled); assert_eq!(config.pruning.target_sparsity, 0.3);
758 assert_eq!(config.distillation.temperature, 3.0);
759 }
760
761 #[test]
762 fn test_performance_improvements_calculation() {
763 let optimizer = ModelOptimizer::new(OptimizationConfig::default(), Device::Cpu);
764
765 let original = ModelMetrics {
766 model_size_bytes: 100_000_000,
767 memory_usage_mb: 400.0,
768 inference_latency_ms: 50.0,
769 throughput_sps: 20.0,
770 parameter_count: 20_000_000,
771 flop_count: 2_000_000_000,
772 };
773
774 let optimized = ModelMetrics {
775 model_size_bytes: 50_000_000, memory_usage_mb: 200.0, inference_latency_ms: 25.0, throughput_sps: 40.0, parameter_count: 10_000_000, flop_count: 1_000_000_000, };
782
783 let improvements = optimizer.calculate_performance_improvements(&original, &optimized);
784
785 assert!((improvements.memory_reduction - 0.5).abs() < 0.001);
786 assert!((improvements.speed_improvement - 2.0).abs() < 0.001);
787 assert!((improvements.size_reduction - 0.5).abs() < 0.001);
788 }
789
790 #[tokio::test]
791 async fn test_model_metrics_measurement() {
792 let optimizer = ModelOptimizer::new(OptimizationConfig::default(), Device::Cpu);
793
794 struct MockModel;
796
797 #[async_trait::async_trait]
798 impl AcousticModel for MockModel {
799 async fn synthesize(
800 &self,
801 _phonemes: &[crate::Phoneme],
802 _config: Option<&crate::SynthesisConfig>,
803 ) -> Result<crate::MelSpectrogram> {
804 tokio::time::sleep(tokio::time::Duration::from_millis(10)).await;
806 Ok(crate::MelSpectrogram {
807 data: vec![vec![0.0; 100]; 80], n_mels: 80,
809 n_frames: 100,
810 sample_rate: 22050,
811 hop_length: 256,
812 })
813 }
814
815 async fn synthesize_batch(
816 &self,
817 inputs: &[&[crate::Phoneme]],
818 _configs: Option<&[crate::SynthesisConfig]>,
819 ) -> Result<Vec<crate::MelSpectrogram>> {
820 let mut results = Vec::new();
821 for _ in inputs {
822 results.push(self.synthesize(&[], None).await?);
823 }
824 Ok(results)
825 }
826
827 fn metadata(&self) -> crate::AcousticModelMetadata {
828 crate::AcousticModelMetadata {
829 name: "MockModel".to_string(),
830 version: "1.0.0".to_string(),
831 architecture: "Mock".to_string(),
832 supported_languages: vec![crate::LanguageCode::EnUs],
833 sample_rate: 22050,
834 mel_channels: 80,
835 is_multi_speaker: false,
836 speaker_count: None,
837 }
838 }
839
840 fn supports(&self, _feature: crate::AcousticModelFeature) -> bool {
841 false
842 }
843
844 async fn set_speaker(&mut self, _speaker_id: Option<u32>) -> Result<()> {
845 Ok(())
846 }
847 }
848
849 let model = MockModel;
850 let metrics = optimizer.measure_model_metrics(&model).await.unwrap();
851
852 assert!(metrics.model_size_bytes > 0);
853 assert!(metrics.memory_usage_mb > 0.0);
854 assert!(metrics.inference_latency_ms > 0.0);
855 assert!(metrics.throughput_sps > 0.0);
856 assert!(metrics.parameter_count > 0);
857 assert!(metrics.flop_count > 0);
858 }
859}