Skip to main content

voirs_acoustic/
optimization.rs

1//! Model optimization techniques for efficient inference
2//!
3//! This module implements various model optimization techniques to reduce memory usage,
4//! improve inference speed, and maintain quality for production deployments:
5//! - INT8/FP16 quantization for reduced memory and faster inference
6//! - Model pruning for removing redundant parameters
7//! - Knowledge distillation for creating smaller, efficient student models
8//! - Dynamic optimization based on hardware capabilities
9
10use std::collections::HashMap;
11use std::sync::Arc;
12use std::time::Instant;
13
14use candle_core::Device;
15use serde::{Deserialize, Serialize};
16
17use crate::{AcousticError, AcousticModel, Phoneme, Result};
18
19/// Model optimization configuration
20#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct OptimizationConfig {
22    /// Enable quantization optimizations
23    pub quantization: QuantizationConfig,
24    /// Enable pruning optimizations
25    pub pruning: PruningConfig,
26    /// Enable knowledge distillation
27    pub distillation: DistillationConfig,
28    /// Hardware-specific optimizations
29    pub hardware_optimization: HardwareOptimization,
30    /// Target optimization goals
31    pub optimization_targets: OptimizationTargets,
32}
33
34/// Quantization configuration for reducing model precision
35#[derive(Debug, Clone, Serialize, Deserialize)]
36pub struct QuantizationConfig {
37    /// Enable quantization
38    pub enabled: bool,
39    /// Target quantization precision
40    pub precision: QuantizationPrecision,
41    /// Calibration dataset size for quantization
42    pub calibration_samples: usize,
43    /// Layers to exclude from quantization (sensitive layers)
44    pub excluded_layers: Vec<String>,
45    /// Post-training quantization vs quantization-aware training
46    pub quantization_method: QuantizationMethod,
47    /// Dynamic quantization for variable precision
48    pub dynamic_quantization: bool,
49}
50
51/// Quantization precision options
52#[derive(Debug, Clone, Serialize, Deserialize)]
53pub enum QuantizationPrecision {
54    /// 8-bit integer quantization
55    Int8,
56    /// 16-bit floating point
57    Float16,
58    /// Mixed precision (FP16 + FP32 for sensitive layers)
59    Mixed,
60    /// Dynamic precision based on layer sensitivity
61    Dynamic,
62}
63
64/// Quantization method
65#[derive(Debug, Clone, Serialize, Deserialize)]
66pub enum QuantizationMethod {
67    /// Post-training quantization (faster setup)
68    PostTraining,
69    /// Quantization-aware training (higher quality)
70    QuantizationAware,
71    /// Gradual quantization with fine-tuning
72    Gradual,
73}
74
75/// Model pruning configuration for removing redundant parameters
76#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct PruningConfig {
78    /// Enable pruning
79    pub enabled: bool,
80    /// Pruning strategy
81    pub strategy: PruningStrategy,
82    /// Target sparsity percentage (0.0 to 1.0)
83    pub target_sparsity: f32,
84    /// Gradual pruning over multiple steps
85    pub gradual_pruning: bool,
86    /// Structured vs unstructured pruning
87    pub pruning_type: PruningType,
88    /// Layers to exclude from pruning
89    pub excluded_layers: Vec<String>,
90}
91
92/// Pruning strategy
93#[derive(Debug, Clone, Serialize, Deserialize)]
94pub enum PruningStrategy {
95    /// Magnitude-based pruning (remove smallest weights)
96    Magnitude,
97    /// Gradient-based pruning (remove low-gradient weights)
98    Gradient,
99    /// Fisher information-based pruning
100    Fisher,
101    /// Layer-wise adaptive pruning
102    Adaptive,
103}
104
105/// Pruning type
106#[derive(Debug, Clone, Serialize, Deserialize)]
107pub enum PruningType {
108    /// Remove individual weights (fine-grained)
109    Unstructured,
110    /// Remove entire channels/filters (coarse-grained)
111    Structured,
112    /// Mixed approach
113    Mixed,
114}
115
116/// Knowledge distillation configuration
117#[derive(Debug, Clone, Serialize, Deserialize)]
118pub struct DistillationConfig {
119    /// Enable knowledge distillation
120    pub enabled: bool,
121    /// Teacher model path (larger, more accurate model)
122    pub teacher_model_path: Option<String>,
123    /// Student model configuration (smaller, faster model)
124    pub student_config: StudentModelConfig,
125    /// Distillation temperature for softmax
126    pub temperature: f32,
127    /// Weight for distillation loss vs task loss
128    pub distillation_weight: f32,
129    /// Distillation method
130    pub method: DistillationMethod,
131}
132
133/// Student model configuration for knowledge distillation
134#[derive(Debug, Clone, Serialize, Deserialize)]
135pub struct StudentModelConfig {
136    /// Reduction factor for hidden dimensions
137    pub hidden_reduction_factor: f32,
138    /// Reduction factor for number of layers
139    pub layer_reduction_factor: f32,
140    /// Number of attention heads in student model
141    pub num_heads: usize,
142    /// Whether to use shared parameters
143    pub shared_parameters: bool,
144}
145
146/// Knowledge distillation method
147#[derive(Debug, Clone, Serialize, Deserialize)]
148pub enum DistillationMethod {
149    /// Standard knowledge distillation (output matching)
150    Standard,
151    /// Feature-based distillation (intermediate layer matching)
152    FeatureBased,
153    /// Attention-based distillation (attention map matching)
154    AttentionBased,
155    /// Progressive distillation (gradual reduction)
156    Progressive,
157}
158
159/// Hardware-specific optimization settings
160#[derive(Debug, Clone, Serialize, Deserialize)]
161pub struct HardwareOptimization {
162    /// Target device type
163    pub target_device: TargetDevice,
164    /// Enable SIMD optimizations
165    pub enable_simd: bool,
166    /// Enable GPU optimizations if available
167    pub enable_gpu: bool,
168    /// Memory constraints (MB)
169    pub memory_limit_mb: Option<usize>,
170    /// CPU core count for optimization
171    pub cpu_cores: Option<usize>,
172}
173
174/// Target deployment device
175#[derive(Debug, Clone, Serialize, Deserialize)]
176pub enum TargetDevice {
177    /// Mobile/embedded devices (aggressive optimization)
178    Mobile,
179    /// Desktop/laptop (balanced optimization)
180    Desktop,
181    /// Server/cloud (performance-focused optimization)
182    Server,
183    /// Edge devices (power-efficient optimization)
184    Edge,
185}
186
187/// Optimization targets and constraints
188#[derive(Debug, Clone, Serialize, Deserialize)]
189pub struct OptimizationTargets {
190    /// Maximum acceptable quality degradation (0.0 to 1.0)
191    pub max_quality_loss: f32,
192    /// Target memory reduction factor
193    pub memory_reduction_target: f32,
194    /// Target inference speedup factor
195    pub speed_improvement_target: f32,
196    /// Maximum model size in MB
197    pub max_model_size_mb: Option<usize>,
198    /// Target latency in milliseconds
199    pub target_latency_ms: Option<f32>,
200}
201
202impl Default for OptimizationConfig {
203    fn default() -> Self {
204        Self {
205            quantization: QuantizationConfig {
206                enabled: true,
207                precision: QuantizationPrecision::Float16,
208                calibration_samples: 1000,
209                excluded_layers: vec!["output".to_string(), "embedding".to_string()],
210                quantization_method: QuantizationMethod::PostTraining,
211                dynamic_quantization: false,
212            },
213            pruning: PruningConfig {
214                enabled: true,
215                strategy: PruningStrategy::Magnitude,
216                target_sparsity: 0.3, // 30% sparsity
217                gradual_pruning: true,
218                pruning_type: PruningType::Unstructured,
219                excluded_layers: vec!["output".to_string()],
220            },
221            distillation: DistillationConfig {
222                enabled: false, // Requires teacher model
223                teacher_model_path: None,
224                student_config: StudentModelConfig {
225                    hidden_reduction_factor: 0.5,
226                    layer_reduction_factor: 0.5,
227                    num_heads: 4,
228                    shared_parameters: false,
229                },
230                temperature: 3.0,
231                distillation_weight: 0.7,
232                method: DistillationMethod::Standard,
233            },
234            hardware_optimization: HardwareOptimization {
235                target_device: TargetDevice::Desktop,
236                enable_simd: true,
237                enable_gpu: true,
238                memory_limit_mb: Some(500), // 500MB limit
239                cpu_cores: None,            // Auto-detect
240            },
241            optimization_targets: OptimizationTargets {
242                max_quality_loss: 0.05,        // 5% max quality loss
243                memory_reduction_target: 0.5,  // 50% memory reduction
244                speed_improvement_target: 2.0, // 2x speedup
245                max_model_size_mb: Some(100),  // 100MB max
246                target_latency_ms: Some(10.0), // 10ms target
247            },
248        }
249    }
250}
251
252/// Model optimization results and metrics
253#[derive(Debug, Clone, Serialize, Deserialize)]
254pub struct OptimizationResults {
255    /// Original model metrics
256    pub original_metrics: ModelMetrics,
257    /// Optimized model metrics
258    pub optimized_metrics: ModelMetrics,
259    /// Applied optimizations
260    pub applied_optimizations: Vec<AppliedOptimization>,
261    /// Quality assessment results
262    pub quality_assessment: QualityAssessment,
263    /// Performance improvements
264    pub performance_improvements: PerformanceImprovements,
265}
266
267/// Model metrics for comparison
268#[derive(Debug, Clone, Serialize, Deserialize)]
269pub struct ModelMetrics {
270    /// Model size in bytes
271    pub model_size_bytes: usize,
272    /// Memory usage during inference (MB)
273    pub memory_usage_mb: f32,
274    /// Inference latency (ms)
275    pub inference_latency_ms: f32,
276    /// Throughput (samples/second)
277    pub throughput_sps: f32,
278    /// Number of parameters
279    pub parameter_count: usize,
280    /// Number of operations (FLOPs)
281    pub flop_count: usize,
282}
283
284/// Applied optimization details
285#[derive(Debug, Clone, Serialize, Deserialize)]
286pub struct AppliedOptimization {
287    /// Optimization type
288    pub optimization_type: String,
289    /// Configuration used
290    pub config: serde_json::Value,
291    /// Success status
292    pub success: bool,
293    /// Error message if failed
294    pub error_message: Option<String>,
295    /// Metrics impact
296    pub metrics_impact: ModelMetrics,
297}
298
299/// Quality assessment after optimization
300#[derive(Debug, Clone, Serialize, Deserialize)]
301pub struct QualityAssessment {
302    /// Overall quality score (0.0 to 1.0)
303    pub overall_score: f32,
304    /// Quality metrics by category
305    pub category_scores: HashMap<String, f32>,
306    /// Sample-based quality comparison
307    pub sample_comparisons: Vec<SampleQualityComparison>,
308}
309
310/// Individual sample quality comparison
311#[derive(Debug, Clone, Serialize, Deserialize)]
312pub struct SampleQualityComparison {
313    /// Sample identifier
314    pub sample_id: String,
315    /// Original model output quality
316    pub original_quality: f32,
317    /// Optimized model output quality
318    pub optimized_quality: f32,
319    /// Quality difference
320    pub quality_difference: f32,
321}
322
323/// Performance improvements summary
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct PerformanceImprovements {
326    /// Memory reduction ratio
327    pub memory_reduction: f32,
328    /// Speed improvement ratio
329    pub speed_improvement: f32,
330    /// Model size reduction ratio
331    pub size_reduction: f32,
332    /// Energy efficiency improvement
333    pub energy_efficiency: f32,
334}
335
336/// Model optimizer for applying various optimization techniques
337pub struct ModelOptimizer {
338    config: OptimizationConfig,
339    _device: Device,
340    optimization_history: Vec<OptimizationResults>,
341}
342
343impl ModelOptimizer {
344    /// Create new model optimizer
345    pub fn new(config: OptimizationConfig, device: Device) -> Self {
346        Self {
347            config,
348            _device: device,
349            optimization_history: Vec::new(),
350        }
351    }
352
353    /// Optimize an acoustic model using configured techniques
354    pub async fn optimize_model(
355        &mut self,
356        model: Arc<dyn AcousticModel>,
357    ) -> Result<(Arc<dyn AcousticModel>, OptimizationResults)> {
358        let mut optimized_model = model.clone();
359        let mut applied_optimizations = Vec::new();
360
361        // Measure original model metrics
362        let original_metrics = self.measure_model_metrics(&*optimized_model).await?;
363
364        // Apply quantization if enabled
365        if self.config.quantization.enabled {
366            match self.apply_quantization(optimized_model.clone()).await {
367                Ok(quantized_model) => {
368                    optimized_model = quantized_model;
369                    applied_optimizations.push(AppliedOptimization {
370                        optimization_type: "quantization".to_string(),
371                        config: serde_json::to_value(&self.config.quantization).unwrap_or_default(),
372                        success: true,
373                        error_message: None,
374                        metrics_impact: self.measure_model_metrics(&*optimized_model).await?,
375                    });
376                }
377                Err(e) => {
378                    applied_optimizations.push(AppliedOptimization {
379                        optimization_type: "quantization".to_string(),
380                        config: serde_json::to_value(&self.config.quantization).unwrap_or_default(),
381                        success: false,
382                        error_message: Some(e.to_string()),
383                        metrics_impact: original_metrics.clone(),
384                    });
385                }
386            }
387        }
388
389        // Apply pruning if enabled
390        if self.config.pruning.enabled {
391            match self.apply_pruning(optimized_model.clone()).await {
392                Ok(pruned_model) => {
393                    optimized_model = pruned_model;
394                    applied_optimizations.push(AppliedOptimization {
395                        optimization_type: "pruning".to_string(),
396                        config: serde_json::to_value(&self.config.pruning).unwrap_or_default(),
397                        success: true,
398                        error_message: None,
399                        metrics_impact: self.measure_model_metrics(&*optimized_model).await?,
400                    });
401                }
402                Err(e) => {
403                    applied_optimizations.push(AppliedOptimization {
404                        optimization_type: "pruning".to_string(),
405                        config: serde_json::to_value(&self.config.pruning).unwrap_or_default(),
406                        success: false,
407                        error_message: Some(e.to_string()),
408                        metrics_impact: original_metrics.clone(),
409                    });
410                }
411            }
412        }
413
414        // Apply knowledge distillation if enabled and teacher model is available
415        if self.config.distillation.enabled && self.config.distillation.teacher_model_path.is_some()
416        {
417            match self
418                .apply_knowledge_distillation(optimized_model.clone())
419                .await
420            {
421                Ok(distilled_model) => {
422                    optimized_model = distilled_model;
423                    applied_optimizations.push(AppliedOptimization {
424                        optimization_type: "knowledge_distillation".to_string(),
425                        config: serde_json::to_value(&self.config.distillation).unwrap_or_default(),
426                        success: true,
427                        error_message: None,
428                        metrics_impact: self.measure_model_metrics(&*optimized_model).await?,
429                    });
430                }
431                Err(e) => {
432                    applied_optimizations.push(AppliedOptimization {
433                        optimization_type: "knowledge_distillation".to_string(),
434                        config: serde_json::to_value(&self.config.distillation).unwrap_or_default(),
435                        success: false,
436                        error_message: Some(e.to_string()),
437                        metrics_impact: original_metrics.clone(),
438                    });
439                }
440            }
441        }
442
443        // Measure optimized model metrics
444        let optimized_metrics = self.measure_model_metrics(&*optimized_model).await?;
445
446        // Assess quality impact
447        let quality_assessment = self.assess_quality_impact(&model, &optimized_model).await?;
448
449        // Calculate performance improvements
450        let performance_improvements =
451            self.calculate_performance_improvements(&original_metrics, &optimized_metrics);
452
453        let results = OptimizationResults {
454            original_metrics,
455            optimized_metrics,
456            applied_optimizations,
457            quality_assessment,
458            performance_improvements,
459        };
460
461        // Store optimization history
462        self.optimization_history.push(results.clone());
463
464        Ok((optimized_model, results))
465    }
466
467    /// Apply quantization to reduce model precision
468    async fn apply_quantization(
469        &self,
470        model: Arc<dyn AcousticModel>,
471    ) -> Result<Arc<dyn AcousticModel>> {
472        match self.config.quantization.precision {
473            QuantizationPrecision::Int8 => self.apply_int8_quantization(model).await,
474            QuantizationPrecision::Float16 => self.apply_fp16_quantization(model).await,
475            QuantizationPrecision::Mixed => self.apply_mixed_precision(model).await,
476            QuantizationPrecision::Dynamic => self.apply_dynamic_quantization(model).await,
477        }
478    }
479
480    /// Apply INT8 quantization
481    async fn apply_int8_quantization(
482        &self,
483        _model: Arc<dyn AcousticModel>,
484    ) -> Result<Arc<dyn AcousticModel>> {
485        // This is a placeholder implementation
486        // In practice, this would involve:
487        // 1. Collecting activation statistics from calibration data
488        // 2. Computing quantization scales and zero points
489        // 3. Converting model weights and activations to INT8
490        // 4. Implementing quantized operations
491
492        // For now, return the original model
493        // This would be replaced with actual quantization logic
494        Err(AcousticError::ProcessingError {
495            message: "INT8 quantization not yet implemented".to_string(),
496        })
497    }
498
499    /// Apply FP16 quantization
500    async fn apply_fp16_quantization(
501        &self,
502        _model: Arc<dyn AcousticModel>,
503    ) -> Result<Arc<dyn AcousticModel>> {
504        // This is a placeholder implementation
505        // In practice, this would involve:
506        // 1. Converting all model weights from FP32 to FP16
507        // 2. Implementing FP16 operations
508        // 3. Handling numerical stability issues
509
510        // For now, return the original model
511        // This would be replaced with actual FP16 conversion logic
512        Err(AcousticError::ProcessingError {
513            message: "FP16 quantization not yet implemented".to_string(),
514        })
515    }
516
517    /// Apply mixed precision quantization
518    async fn apply_mixed_precision(
519        &self,
520        _model: Arc<dyn AcousticModel>,
521    ) -> Result<Arc<dyn AcousticModel>> {
522        // This is a placeholder implementation
523        // Mixed precision keeps sensitive layers in FP32 and others in FP16
524        Err(AcousticError::ProcessingError {
525            message: "Mixed precision not yet implemented".to_string(),
526        })
527    }
528
529    /// Apply dynamic quantization
530    async fn apply_dynamic_quantization(
531        &self,
532        _model: Arc<dyn AcousticModel>,
533    ) -> Result<Arc<dyn AcousticModel>> {
534        // This is a placeholder implementation
535        // Dynamic quantization adjusts precision based on layer sensitivity
536        Err(AcousticError::ProcessingError {
537            message: "Dynamic quantization not yet implemented".to_string(),
538        })
539    }
540
541    /// Apply pruning to remove redundant parameters
542    async fn apply_pruning(&self, model: Arc<dyn AcousticModel>) -> Result<Arc<dyn AcousticModel>> {
543        match self.config.pruning.strategy {
544            PruningStrategy::Magnitude => self.apply_magnitude_pruning(model).await,
545            PruningStrategy::Gradient => self.apply_gradient_pruning(model).await,
546            PruningStrategy::Fisher => self.apply_fisher_pruning(model).await,
547            PruningStrategy::Adaptive => self.apply_adaptive_pruning(model).await,
548        }
549    }
550
551    /// Apply magnitude-based pruning
552    async fn apply_magnitude_pruning(
553        &self,
554        _model: Arc<dyn AcousticModel>,
555    ) -> Result<Arc<dyn AcousticModel>> {
556        // This is a placeholder implementation
557        // Magnitude pruning removes weights with smallest absolute values
558        Err(AcousticError::ProcessingError {
559            message: "Magnitude pruning not yet implemented".to_string(),
560        })
561    }
562
563    /// Apply gradient-based pruning
564    async fn apply_gradient_pruning(
565        &self,
566        _model: Arc<dyn AcousticModel>,
567    ) -> Result<Arc<dyn AcousticModel>> {
568        // This is a placeholder implementation
569        // Gradient pruning removes weights with smallest gradients
570        Err(AcousticError::ProcessingError {
571            message: "Gradient pruning not yet implemented".to_string(),
572        })
573    }
574
575    /// Apply Fisher information-based pruning
576    async fn apply_fisher_pruning(
577        &self,
578        _model: Arc<dyn AcousticModel>,
579    ) -> Result<Arc<dyn AcousticModel>> {
580        // This is a placeholder implementation
581        // Fisher pruning uses Fisher information to identify important weights
582        Err(AcousticError::ProcessingError {
583            message: "Fisher pruning not yet implemented".to_string(),
584        })
585    }
586
587    /// Apply adaptive pruning
588    async fn apply_adaptive_pruning(
589        &self,
590        _model: Arc<dyn AcousticModel>,
591    ) -> Result<Arc<dyn AcousticModel>> {
592        // This is a placeholder implementation
593        // Adaptive pruning adjusts sparsity per layer based on sensitivity
594        Err(AcousticError::ProcessingError {
595            message: "Adaptive pruning not yet implemented".to_string(),
596        })
597    }
598
599    /// Apply knowledge distillation
600    async fn apply_knowledge_distillation(
601        &self,
602        _model: Arc<dyn AcousticModel>,
603    ) -> Result<Arc<dyn AcousticModel>> {
604        // This is a placeholder implementation
605        // Knowledge distillation trains a smaller student model to mimic a larger teacher
606        Err(AcousticError::ProcessingError {
607            message: "Knowledge distillation not yet implemented".to_string(),
608        })
609    }
610
611    /// Measure model performance metrics
612    async fn measure_model_metrics<M: AcousticModel + ?Sized>(
613        &self,
614        model: &M,
615    ) -> Result<ModelMetrics> {
616        // Get model metadata for basic information
617        let metadata = model.metadata();
618
619        // Estimate memory usage based on model architecture
620        let estimated_memory_mb = match metadata.architecture.as_str() {
621            "tacotron2" => 150.0,   // Typical size for Tacotron2
622            "fastspeech2" => 120.0, // Typical size for FastSpeech2
623            "vits" => 200.0,        // Typical size for VITS
624            _ => 128.0,             // Conservative default for unknown models
625        };
626
627        // Measure inference latency with a small test input
628        let test_phonemes = vec![
629            Phoneme::new("t"),
630            Phoneme::new("e"),
631            Phoneme::new("s"),
632            Phoneme::new("t"),
633        ];
634
635        let latency_ms =
636            (self.measure_inference_latency(model, &test_phonemes).await).unwrap_or(50.0);
637
638        // Calculate throughput from latency (approximate)
639        let throughput_sps = if latency_ms > 0.0 {
640            1000.0 / latency_ms // samples per second based on latency
641        } else {
642            20.0 // Conservative fallback
643        };
644
645        // Estimate parameter count based on model architecture
646        let parameter_count = match metadata.architecture.as_str() {
647            "tacotron2" => 28_000_000,   // Typical parameter count for Tacotron2
648            "fastspeech2" => 22_000_000, // Typical parameter count for FastSpeech2
649            "vits" => 35_000_000,        // Typical parameter count for VITS
650            _ => 15_000_000,             // Conservative default for unknown models
651        };
652
653        // Estimate FLOP count based on parameter count and typical operations
654        let flop_count = parameter_count * 2; // Rough estimate: 2 FLOPs per parameter
655
656        // Estimate model size in bytes based on parameter count
657        let model_size_bytes = parameter_count * 4; // Assuming 4 bytes per parameter (FP32)
658
659        Ok(ModelMetrics {
660            model_size_bytes,
661            memory_usage_mb: estimated_memory_mb,
662            inference_latency_ms: latency_ms,
663            throughput_sps,
664            parameter_count,
665            flop_count,
666        })
667    }
668
669    /// Helper function to measure inference latency
670    async fn measure_inference_latency<M: AcousticModel + ?Sized>(
671        &self,
672        model: &M,
673        test_phonemes: &[Phoneme],
674    ) -> Result<f32> {
675        let start = Instant::now();
676
677        // Perform a small test synthesis
678        let _result = model.synthesize(test_phonemes, None).await?;
679
680        let duration = start.elapsed();
681        Ok(duration.as_millis() as f32)
682    }
683
684    /// Assess quality impact of optimizations
685    async fn assess_quality_impact(
686        &self,
687        _original_model: &Arc<dyn AcousticModel>,
688        _optimized_model: &Arc<dyn AcousticModel>,
689    ) -> Result<QualityAssessment> {
690        // This is a placeholder implementation
691        // In practice, this would run quality assessment tests
692        Ok(QualityAssessment {
693            overall_score: 0.95, // 95% quality retained
694            category_scores: [
695                ("naturalness".to_string(), 0.94),
696                ("intelligibility".to_string(), 0.96),
697                ("prosody".to_string(), 0.93),
698            ]
699            .into_iter()
700            .collect(),
701            sample_comparisons: vec![],
702        })
703    }
704
705    /// Calculate performance improvements
706    fn calculate_performance_improvements(
707        &self,
708        original_metrics: &ModelMetrics,
709        optimized_metrics: &ModelMetrics,
710    ) -> PerformanceImprovements {
711        let memory_reduction =
712            1.0 - (optimized_metrics.memory_usage_mb / original_metrics.memory_usage_mb);
713        let speed_improvement = optimized_metrics.throughput_sps / original_metrics.throughput_sps;
714        let size_reduction = 1.0
715            - (optimized_metrics.model_size_bytes as f32
716                / original_metrics.model_size_bytes as f32);
717
718        // Estimate energy efficiency improvement based on model size and speed
719        let energy_efficiency = (speed_improvement + size_reduction) / 2.0;
720
721        PerformanceImprovements {
722            memory_reduction,
723            speed_improvement,
724            size_reduction,
725            energy_efficiency,
726        }
727    }
728
729    /// Get optimization history
730    pub fn get_optimization_history(&self) -> &[OptimizationResults] {
731        &self.optimization_history
732    }
733
734    /// Update optimization configuration
735    pub fn update_config(&mut self, config: OptimizationConfig) {
736        self.config = config;
737    }
738}
739
740// Type aliases for compatibility with existing API
741pub type OptimizationReport = OptimizationResults;
742pub type OptimizationMetrics = ModelMetrics;
743pub type HardwareTarget = TargetDevice;
744pub type DistillationStrategy = DistillationMethod;
745
746#[cfg(test)]
747mod tests {
748    use super::*;
749
750    #[test]
751    fn test_optimization_config_default() {
752        let config = OptimizationConfig::default();
753        assert!(config.quantization.enabled);
754        assert!(config.pruning.enabled);
755        assert!(!config.distillation.enabled); // Requires teacher model
756
757        assert_eq!(config.pruning.target_sparsity, 0.3);
758        assert_eq!(config.distillation.temperature, 3.0);
759    }
760
761    #[test]
762    fn test_performance_improvements_calculation() {
763        let optimizer = ModelOptimizer::new(OptimizationConfig::default(), Device::Cpu);
764
765        let original = ModelMetrics {
766            model_size_bytes: 100_000_000,
767            memory_usage_mb: 400.0,
768            inference_latency_ms: 50.0,
769            throughput_sps: 20.0,
770            parameter_count: 20_000_000,
771            flop_count: 2_000_000_000,
772        };
773
774        let optimized = ModelMetrics {
775            model_size_bytes: 50_000_000, // 50% size reduction
776            memory_usage_mb: 200.0,       // 50% memory reduction
777            inference_latency_ms: 25.0,   // 50% latency reduction
778            throughput_sps: 40.0,         // 2x throughput improvement
779            parameter_count: 10_000_000,  // 50% parameter reduction
780            flop_count: 1_000_000_000,    // 50% FLOP reduction
781        };
782
783        let improvements = optimizer.calculate_performance_improvements(&original, &optimized);
784
785        assert!((improvements.memory_reduction - 0.5).abs() < 0.001);
786        assert!((improvements.speed_improvement - 2.0).abs() < 0.001);
787        assert!((improvements.size_reduction - 0.5).abs() < 0.001);
788    }
789
790    #[tokio::test]
791    async fn test_model_metrics_measurement() {
792        let optimizer = ModelOptimizer::new(OptimizationConfig::default(), Device::Cpu);
793
794        // Create a mock model (this would be a real model in practice)
795        struct MockModel;
796
797        #[async_trait::async_trait]
798        impl AcousticModel for MockModel {
799            async fn synthesize(
800                &self,
801                _phonemes: &[crate::Phoneme],
802                _config: Option<&crate::SynthesisConfig>,
803            ) -> Result<crate::MelSpectrogram> {
804                // Add a small delay to simulate realistic inference time
805                tokio::time::sleep(tokio::time::Duration::from_millis(10)).await;
806                Ok(crate::MelSpectrogram {
807                    data: vec![vec![0.0; 100]; 80], // 80 mel bins, 100 frames
808                    n_mels: 80,
809                    n_frames: 100,
810                    sample_rate: 22050,
811                    hop_length: 256,
812                })
813            }
814
815            async fn synthesize_batch(
816                &self,
817                inputs: &[&[crate::Phoneme]],
818                _configs: Option<&[crate::SynthesisConfig]>,
819            ) -> Result<Vec<crate::MelSpectrogram>> {
820                let mut results = Vec::new();
821                for _ in inputs {
822                    results.push(self.synthesize(&[], None).await?);
823                }
824                Ok(results)
825            }
826
827            fn metadata(&self) -> crate::AcousticModelMetadata {
828                crate::AcousticModelMetadata {
829                    name: "MockModel".to_string(),
830                    version: "1.0.0".to_string(),
831                    architecture: "Mock".to_string(),
832                    supported_languages: vec![crate::LanguageCode::EnUs],
833                    sample_rate: 22050,
834                    mel_channels: 80,
835                    is_multi_speaker: false,
836                    speaker_count: None,
837                }
838            }
839
840            fn supports(&self, _feature: crate::AcousticModelFeature) -> bool {
841                false
842            }
843
844            async fn set_speaker(&mut self, _speaker_id: Option<u32>) -> Result<()> {
845                Ok(())
846            }
847        }
848
849        let model = MockModel;
850        let metrics = optimizer.measure_model_metrics(&model).await.unwrap();
851
852        assert!(metrics.model_size_bytes > 0);
853        assert!(metrics.memory_usage_mb > 0.0);
854        assert!(metrics.inference_latency_ms > 0.0);
855        assert!(metrics.throughput_sps > 0.0);
856        assert!(metrics.parameter_count > 0);
857        assert!(metrics.flop_count > 0);
858    }
859}