vmi_utils/injector/os/windows.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
use isr_core::Profile;
use isr_macros::{offsets, Field};
use vmi_arch_amd64::{Amd64, ControlRegister, EventMonitor, EventReason, Interrupt, Registers};
use vmi_core::{
os::ProcessId, Architecture as _, Hex, MemoryAccess, Registers as _, Va, View, VmiContext,
VmiCore, VmiDriver, VmiError, VmiEventResponse, VmiHandler,
};
use vmi_os_windows::{WindowsOs, WindowsOsExt as _};
use super::{
super::{arch::ArchAdapter as _, CallBuilder, InjectorHandler, Recipe, RecipeExecutor},
OsAdapter,
};
// const INVALID_VA: Va = Va(0xffff_ffff_ffff_ffff);
const INVALID_VIEW: View = View(0xffff);
// const INVALID_TID: ThreadId = ThreadId(0xffff_ffff);
// const INVALID_PID: ProcessId = ProcessId(0xffff_ffff);
offsets! {
#[derive(Debug)]
pub struct Offsets {
struct _KTRAP_FRAME {
Rip: Field,
Rsp: Field,
}
struct _KTHREAD {
TrapFrame: Field,
}
}
}
impl<Driver> OsAdapter<Driver> for WindowsOs<Driver>
where
Driver: VmiDriver<Architecture = Amd64>,
{
type Offsets = Offsets;
fn prepare_function_call(
&self,
vmi: &VmiCore<Driver>,
registers: &mut Registers,
builder: CallBuilder,
) -> Result<(), VmiError> {
tracing::trace!(
rsp = %Hex(registers.rsp),
rip = %Hex(registers.rip),
"preparing function call"
);
let arguments = Amd64::push_arguments(vmi, registers, &builder.arguments)?;
tracing::trace!(
rsp = %Hex(registers.rsp),
"pushed arguments"
);
let mut addr = registers.rsp;
let nb_args = arguments.len();
// According to Microsoft Doc "Building C/C++ Programs":
// > The stack will always be maintained 16-byte aligned, except within the
// > prolog
// > (for example, after the return address is pushed), and except where
// > indicated
// > in Function Types for a certain class of frame functions.
//
// Add padding to be aligned to "16+8" boundary.
//
// https://www.gamasutra.com/view/news/178446/Indepth_Windows_x64_ABI_Stack_frames.php
//
// This padding on the stack only exists if the maximum number of parameters
// passed to functions is greater than 4 and is an odd number.
let effective_nb_args = nb_args.max(4) as u64;
if (addr - effective_nb_args * 0x8 - 0x8) & 0xf != 8 {
addr -= 0x8;
tracing::trace!(
addr = %Hex(addr),
"aligning stack"
);
}
// http://www.codemachine.com/presentations/GES2010.TRoy.Slides.pdf
//
// First 4 parameters to functions are always passed in registers
// P1=rcx, P2=rdx, P3=r8, P4=r9
// 5th parameter onwards (if any) passed via the stack
// write parameters (5th onwards) into guest's stack
for index in (4..nb_args).rev() {
addr -= 0x8;
vmi.write_u64((addr.into(), registers.cr3.into()), arguments[index])?;
tracing::trace!(
index,
value = %Hex(arguments[index]),
addr = %Hex(addr),
"argument (stack)"
);
}
// write the first 4 parameters into registers
if nb_args > 3 {
registers.r9 = arguments[3];
tracing::trace!(
index = 3,
value = %Hex(arguments[3]),
"argument"
);
}
if nb_args > 2 {
registers.r8 = arguments[2];
tracing::trace!(
index = 2,
value = %Hex(arguments[2]),
"argument"
);
}
if nb_args > 1 {
registers.rdx = arguments[1];
tracing::trace!(
index = 1,
value = %Hex(arguments[1]),
"argument"
);
}
if nb_args > 0 {
registers.rcx = arguments[0];
tracing::trace!(
index = 0,
value = %Hex(arguments[0]),
"argument"
);
}
// allocate 0x20 "homing space"
addr -= 0x20;
// save the return address
addr -= 0x8;
vmi.write_u64((addr.into(), registers.cr3.into()), registers.rip)?;
// grow the stack
registers.rsp = addr;
// set the new instruction pointer
registers.rip = builder.function_address.into();
tracing::trace!(
rsp = %Hex(registers.rsp),
rip = %Hex(registers.rip),
"finished preparing function call"
);
Ok(())
}
}
#[allow(non_snake_case)]
impl<Driver, T> InjectorHandler<Driver, WindowsOs<Driver>, T>
where
Driver: VmiDriver<Architecture = Amd64>,
{
/// Creates a new injector handler.
pub fn new(
vmi: &VmiCore<Driver>,
profile: &Profile,
pid: ProcessId,
recipe: Recipe<Driver, WindowsOs<Driver>, T>,
) -> Result<Self, VmiError> {
let offsets = Offsets::new(profile)?;
let view = vmi.create_view(MemoryAccess::RWX)?;
vmi.switch_to_view(view)?;
vmi.monitor_enable(EventMonitor::Register(ControlRegister::Cr3))?;
vmi.monitor_enable(EventMonitor::Singlestep)?;
let bridge = recipe.bridge;
if bridge {
vmi.monitor_enable(EventMonitor::CpuId)?;
}
Ok(Self {
pid,
tid: None,
hijacked: false,
sp_va: None,
ip_va: None,
ip_pa: None,
offsets,
recipe: RecipeExecutor::new(recipe),
view,
bridge,
finished: false,
})
}
#[tracing::instrument(
name = "injector",
skip_all,
fields(
vcpu = %vmi.event().vcpu_id(),
rip = %Va(vmi.registers().rip),
)
)]
fn dispatch(
&mut self,
vmi: &VmiContext<Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
match vmi.event().reason() {
EventReason::MemoryAccess(_) => self.on_memory_access(vmi),
EventReason::WriteControlRegister(_) => {
let _ = self.on_write_cr(vmi);
Ok(VmiEventResponse::default())
}
EventReason::CpuId(_) => self.on_cpuid(vmi),
_ => panic!("Unhandled event: {:?}", vmi.event().reason()),
}
}
#[tracing::instrument(name = "cpuid", skip_all)]
fn on_cpuid(
&mut self,
vmi: &VmiContext<Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
const SYNC_MAGIC_LEAF: u32 = 0x406e7964; // '@nyd'
const SYNC_MAGIC_RESPONSE: u64 = 0x616e7964; // 'anyd'
const SYNC_REQUEST_HELLO: u16 = 0x0000;
const SYNC_REQUEST_STATUS: u16 = 0x8000;
const SYNC_REQUEST_ERROR: u16 = 0xFFFF;
const SYNC_LAST_PHASE: u16 = 0xFFFF;
const SYNC_RESPONSE_WAIT: u64 = 0x00000000;
const SYNC_RESPONSE_CONTINUE: u64 = 0x00000001;
const SYNC_RESPONSE_ABORT: u64 = 0xFFFFFFFF;
let cpuid = vmi.event().reason().as_cpuid();
let mut registers = vmi.registers().gp_registers();
registers.rip += cpuid.instruction_length as u64;
tracing::trace!(
rip = %Va(registers.rip),
leaf = %Hex(cpuid.leaf),
subleaf = %Hex(cpuid.subleaf),
);
if cpuid.leaf != SYNC_MAGIC_LEAF {
// tracing::trace!("not the right leaf");
return Ok(VmiEventResponse::set_registers(registers));
}
let request = (cpuid.subleaf >> 16) as u16;
let method = (cpuid.subleaf & 0xFFFF) as u16;
match (request, method) {
(SYNC_REQUEST_HELLO, _) => {
tracing::debug!("hello request");
registers.rax = SYNC_MAGIC_RESPONSE;
}
(SYNC_REQUEST_STATUS, SYNC_LAST_PHASE) => {
tracing::debug!("last phase request");
registers.rax = SYNC_RESPONSE_WAIT;
self.finished = true;
}
(SYNC_REQUEST_STATUS, phase) => {
tracing::debug!(phase, "status request");
registers.rax = SYNC_RESPONSE_CONTINUE;
}
(SYNC_REQUEST_ERROR, code) => {
tracing::error!(code, "error request");
registers.rax = SYNC_RESPONSE_ABORT;
self.finished = true;
}
_ => {
tracing::error!(request, method, "unknown request");
registers.rax = SYNC_RESPONSE_ABORT;
self.finished = true;
}
};
if self.finished {
vmi.monitor_disable(EventMonitor::CpuId)?;
};
registers.rbx = SYNC_MAGIC_RESPONSE;
registers.rcx = SYNC_MAGIC_RESPONSE;
registers.rdx = SYNC_MAGIC_RESPONSE;
Ok(VmiEventResponse::set_registers(registers))
}
#[tracing::instrument(name = "write_cr", skip_all)]
fn on_write_cr(
&mut self,
vmi: &VmiContext<Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
//
// Early exit if the thread has already been hijacked.
// (Besides, in such case, this CR3 monitoring is being disabled anyway.)
//
if self.hijacked {
return Ok(VmiEventResponse::default());
}
//
// Early exit if the current process is not the target process.
//
let current_pid = vmi.os().current_process_id()?;
if current_pid != self.pid {
return Ok(VmiEventResponse::default());
}
//
// Figure out if the current thread is viable for hijacking.
// First, fetch the current TID and the next instruction from
// trap frame of the current thread.
//
let current_tid = vmi.os().current_thread_id()?;
let KTHREAD_TrapFrame = self.offsets._KTHREAD.TrapFrame.offset;
let KTRAP_FRAME_Rsp = self.offsets._KTRAP_FRAME.Rsp.offset;
let KTRAP_FRAME_Rip = self.offsets._KTRAP_FRAME.Rip.offset;
let current_thread = vmi.os().current_thread()?;
let current_thread = Va::from(current_thread);
let trap_frame = vmi.read_va(current_thread + KTHREAD_TrapFrame)?;
let sp_va = vmi.read_va(trap_frame + KTRAP_FRAME_Rsp)?;
let ip_va = vmi.read_va(trap_frame + KTRAP_FRAME_Rip)?;
//
// Verify that the next instruction of this thread is in a user-mode
// address space.
//
if !vmi.os().is_valid_user_address(ip_va)? {
tracing::trace!(%ip_va, "skipping invalid pc");
return Ok(VmiEventResponse::default());
}
//
// Translate the instruction pointer to a physical address.
//
let ip_pa = match vmi.translate_address(ip_va) {
Ok(ip_pa) => {
tracing::trace!(
%current_tid,
%sp_va,
%ip_va,
%ip_pa,
"trying to hijack thread"
);
ip_pa
}
Err(err) => {
tracing::trace!(
%current_tid,
%sp_va,
%ip_va,
ip_pa = "error",
"trying to hijack thread"
);
return Err(err);
}
};
//
// If we've tried to hijack a thread before, we need to restore the
// previous memory access permissions.
//
if let Some(previous_ip_pa) = self.ip_pa {
let previous_ip_gfn = Driver::Architecture::gfn_from_pa(previous_ip_pa);
vmi.set_memory_access(previous_ip_gfn, self.view, MemoryAccess::RWX)?;
}
//
// Set the memory access permissions for the next user-mode instruction.
// This will unset the eXecute permission for the page containing the
// next user-mode instruction. This is necessary to trigger a `MemoryAccess`
// event when the thread resumes execution.
//
let ip_gfn = Driver::Architecture::gfn_from_pa(ip_pa);
vmi.set_memory_access(ip_gfn, self.view, MemoryAccess::RW)?;
//
// Mark down the current TID and the VA/PA of the next user-mode instruction.
// The next `MemoryAccess` handler will try to hijack the thread.
//
self.tid = Some(current_tid);
self.sp_va = Some(sp_va);
self.ip_va = Some(ip_va);
self.ip_pa = Some(ip_pa);
Ok(VmiEventResponse::default())
}
#[tracing::instrument(name = "memory_access", skip_all)]
fn on_memory_access(
&mut self,
vmi: &VmiContext<Driver, WindowsOs<Driver>>,
) -> Result<VmiEventResponse<Amd64>, VmiError> {
//
// Early exit if the memory view is not the target view.
//
if vmi.event().view() != Some(self.view) {
tracing::trace!(
view = %self.view,
current_view = %vmi.event().view().unwrap_or(INVALID_VIEW),
"not the right view"
);
return Ok(VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view()));
}
//
// Early exit if the current process is not the target process.
// Note that some physical memory pages (especially those containing
// mapped files, such as DLLs) are shared among multiple processes.
// Therefore this event might have been triggered by a different process.
//
let current_pid = vmi.os().current_process_id()?;
if current_pid != self.pid {
// Too noisy...
// tracing::trace!(
// pid = %self.pid,
// %current_pid,
// "not the right process"
// );
return Ok(VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view()));
}
//
// Early exit if the current thread is not the target thread.
//
let current_tid = vmi.os().current_thread_id()?;
if Some(current_tid) != self.tid {
// Too noisy...
// tracing::trace!(
// tid = %self.tid.unwrap_or(INVALID_TID),
// %current_tid,
// "not the right thread"
// );
return Ok(VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view()));
}
//
// Early exit if this instruction pointer is not the one we're looking for.
//
let registers = vmi.registers();
let ip = Va(registers.rip);
if Some(ip) != self.ip_va {
//tracing::trace!(
// ip = %self.ip_va.unwrap_or(INVALID_VA),
// current_ip = %ip,
// "not the right instruction pointer"
//);
return Ok(VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view()));
}
//
// Hijack the thread, save the current registers, and disable CR3 monitoring.
//
if !self.hijacked {
tracing::debug!(%current_tid, "thread hijacked");
self.hijacked = true;
vmi.monitor_disable(EventMonitor::Register(ControlRegister::Cr3))?;
}
let sp = Va(registers.rsp);
if let Some(sp_va) = self.sp_va {
if sp_va > sp {
tracing::trace!(
sp = %sp_va,
current_sp = %sp,
"not the right stack pointer"
);
return Ok(
VmiEventResponse::toggle_fast_singlestep().and_set_view(vmi.default_view())
);
}
}
//
// Execute the next step in the recipe.
//
//println!("BEFORE");
//println!("RIP: 0x{:016X}", registers.rip);
//println!("RSP: 0x{:016X}", registers.rsp);
//let _ = hexdump(vmi, (Va(registers.rsp - 0x200), registers.cr3.into()), 0x400, Representation::U64);
let new_registers = self.recipe.execute(vmi)?;
self.sp_va = Some(Va(new_registers.rsp));
//println!("AFTER");
//println!("RIP: 0x{:016X}", new_registers.rip);
//println!("RSP: 0x{:016X}", new_registers.rsp);
//let _ = hexdump(vmi, (Va(registers.rsp - 0x200), registers.cr3.into()), 0x400, Representation::U64);
if self.recipe.done() {
//
// If the recipe is finished, restore the previous memory access permissions,
// switch back to the default view, disable single-stepping, and restore back
// the original registers.
//
let memory_access = vmi.event().reason().as_memory_access();
let gfn = Driver::Architecture::gfn_from_pa(memory_access.pa);
vmi.set_memory_access(gfn, self.view, MemoryAccess::RWX)?;
vmi.monitor_disable(EventMonitor::Singlestep)?;
vmi.switch_to_view(vmi.default_view())?;
vmi.destroy_view(self.view)?;
// If the bridge was not enabled, we're done.
if !self.bridge {
self.finished = true;
}
}
Ok(VmiEventResponse::set_registers(
new_registers.gp_registers(),
))
}
}
impl<Driver, T> VmiHandler<Driver, WindowsOs<Driver>>
for InjectorHandler<Driver, WindowsOs<Driver>, T>
where
Driver: VmiDriver<Architecture = Amd64>,
{
fn handle_event(
&mut self,
vmi: VmiContext<Driver, WindowsOs<Driver>>,
) -> VmiEventResponse<Amd64> {
vmi.flush_v2p_cache();
match self.dispatch(&vmi) {
Ok(response) => response,
Err(VmiError::PageFault(pfs)) => {
let pf = pfs[0];
tracing::warn!(?pf, "injecting page fault");
let _ = vmi
.inject_interrupt(vmi.event().vcpu_id(), Interrupt::page_fault(pf.address, 0));
VmiEventResponse::default()
}
Err(err) => panic!("Unhandled error: {err:?}"),
}
}
fn finished(&self) -> bool {
self.finished
}
}