vmi_core/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
//! Core VMI functionality.
pub mod arch;
mod context;
mod core;
mod driver;
mod error;
mod event;
mod handler;
pub mod os;
mod page;
mod session;
use std::{
cell::RefCell,
num::NonZeroUsize,
time::{Duration, Instant},
};
use lru::LruCache;
use zerocopy::{FromBytes, Immutable, IntoBytes};
pub use self::{
arch::{Architecture, Registers},
context::{VmiContext, VmiContextProber, VmiOsContext, VmiOsContextProber},
core::{
AccessContext, AddressContext, Gfn, Hex, MemoryAccess, Pa, TranslationMechanism, Va,
VcpuId, View, VmiInfo,
},
driver::VmiDriver,
error::{PageFault, PageFaults, VmiError},
event::{VmiEvent, VmiEventFlags, VmiEventResponse, VmiEventResponseFlags},
handler::VmiHandler,
os::VmiOs,
page::VmiMappedPage,
session::{VmiOsSession, VmiOsSessionProber, VmiSession, VmiSessionProber},
};
struct Cache {
gfn: RefCell<LruCache<Gfn, VmiMappedPage>>,
v2p: RefCell<LruCache<AccessContext, Pa>>,
}
impl Cache {
const DEFAULT_SIZE: usize = 8192;
pub fn new() -> Self {
Self {
gfn: RefCell::new(LruCache::new(
NonZeroUsize::new(Self::DEFAULT_SIZE).unwrap(),
)),
v2p: RefCell::new(LruCache::new(
NonZeroUsize::new(Self::DEFAULT_SIZE).unwrap(),
)),
}
}
}
/// A callback function type for handling VMI events.
///
/// This type represents a function or closure that is called when a VMI event
/// occurs. The [`VmiEventResponse`] returned by the callback determines how the
/// event is handled.
pub type VmiEventCallback<'a, Arch> = dyn FnMut(&VmiEvent<Arch>) -> VmiEventResponse<Arch> + 'a;
/// The core functionality for Virtual Machine Introspection (VMI).
pub struct VmiCore<Driver>
where
Driver: VmiDriver,
{
driver: Driver,
cache: Cache,
read_page_fn: fn(&Self, Gfn) -> Result<VmiMappedPage, VmiError>,
translate_access_context_fn: fn(&Self, AccessContext) -> Result<Pa, VmiError>,
read_string_length_limit: RefCell<Option<usize>>,
created: Instant,
}
impl<Driver> VmiCore<Driver>
where
Driver: VmiDriver,
{
/// Creates a new VmiCore instance with the given driver.
///
/// Both the GFN cache and the V2P cache are enabled by default,
/// each with a capacity of 8192 entries.
pub fn new(driver: Driver) -> Result<Self, VmiError> {
Ok(Self {
driver,
cache: Cache::new(),
read_page_fn: Self::read_page_cache,
translate_access_context_fn: Self::translate_access_context_cache,
read_string_length_limit: RefCell::new(None),
created: Instant::now(),
})
}
/// Enables the Guest Frame Number (GFN) cache.
///
/// The GFN cache stores the contents of recently accessed memory pages,
/// indexed by their GFN. This can significantly improve performance when
/// repeatedly accessing the same memory regions, as it avoids redundant
/// reads from the virtual machine.
///
/// When enabled, subsequent calls to [`read_page`] will first check
/// the cache before querying the driver.
///
/// # Panics
///
/// Panics if `size` is zero.
///
/// [`read_page`]: Self::read_page
pub fn with_gfn_cache(self, size: usize) -> Self {
Self {
cache: Cache {
gfn: RefCell::new(LruCache::new(NonZeroUsize::new(size).unwrap())),
..self.cache
},
read_page_fn: Self::read_page_cache,
..self
}
}
/// Enables the GFN cache.
///
/// See [`with_gfn_cache`] for more details.
///
/// [`with_gfn_cache`]: Self::with_gfn_cache
pub fn enable_gfn_cache(&mut self) {
self.read_page_fn = Self::read_page_cache;
}
/// Disables the GFN cache.
///
/// Subsequent calls to [`read_page`] will bypass the cache and read
/// directly from the virtual machine.
///
/// [`read_page`]: Self::read_page
pub fn disable_gfn_cache(&mut self) {
self.read_page_fn = Self::read_page_nocache;
}
/// Resizes the GFN cache.
///
/// This allows you to adjust the cache size dynamically based on your
/// performance needs. A larger cache can improve performance for
/// workloads with high memory locality, but consumes more memory.
///
/// # Panics
///
/// Panics if `size` is zero.
pub fn resize_gfn_cache(&mut self, size: usize) {
self.cache
.gfn
.borrow_mut()
.resize(NonZeroUsize::new(size).unwrap());
}
/// Removes a specific entry from the GFN cache.
///
/// Returns the removed entry if it was present.
/// This is useful for invalidating cached data that might have
/// become stale.
pub fn flush_gfn_cache_entry(&self, gfn: Gfn) -> Option<VmiMappedPage> {
self.cache.gfn.borrow_mut().pop(&gfn)
}
/// Clears the entire GFN cache.
pub fn flush_gfn_cache(&self) {
self.cache.gfn.borrow_mut().clear();
}
///// Retrieves metrics about the GFN cache.
//pub fn gfn_cache_metrics(&self) -> CacheMetrics {
// let cache = self.cache.gfn.borrow();
// CacheMetrics {
// hits: ...,
// misses: ...,
// }
//}
/// Enables the virtual-to-physical (V2P) address translation cache.
///
/// The V2P cache stores the results of recent address translations,
/// mapping virtual addresses (represented by [`AccessContext`]) to their
/// corresponding physical addresses ([`Pa`]). This can significantly
/// speed up memory access operations, as address translation can be a
/// relatively expensive operation.
///
/// When enabled, [`translate_access_context`] will consult the cache
/// before performing a full translation.
///
/// # Panics
///
/// Panics if `size` is zero.
///
/// [`translate_access_context`]: Self::translate_access_context
pub fn with_v2p_cache(self, size: usize) -> Self {
Self {
cache: Cache {
v2p: RefCell::new(LruCache::new(NonZeroUsize::new(size).unwrap())),
..self.cache
},
translate_access_context_fn: Self::translate_access_context_cache,
..self
}
}
/// Enables the V2P cache.
///
/// See [`with_v2p_cache`] for more details.
///
/// [`with_v2p_cache`]: Self::with_v2p_cache
pub fn enable_v2p_cache(&mut self) {
self.translate_access_context_fn = Self::translate_access_context_cache;
}
/// Disables the V2P cache.
///
/// Subsequent calls to [`translate_access_context`] will bypass the cache
/// and perform a full address translation every time.
///
/// [`translate_access_context`]: Self::translate_access_context
pub fn disable_v2p_cache(&mut self) {
self.translate_access_context_fn = Self::translate_access_context_nocache;
}
/// Resizes the V2P cache.
///
/// This allows dynamic adjustment of the cache size to balance
/// performance and memory usage. A larger cache can lead to better
/// performance if address translations are frequent and exhibit
/// good locality.
///
/// # Panics
///
/// Panics if `size` is zero.
pub fn resize_v2p_cache(&mut self, size: usize) {
self.cache
.v2p
.borrow_mut()
.resize(NonZeroUsize::new(size).unwrap());
}
/// Removes a specific entry from the V2P cache.
///
/// Returns the removed entry if it was present.
/// This can be used to invalidate cached translations that may have
/// become stale due to changes in the guest's memory mapping.
pub fn flush_v2p_cache_entry(&self, ctx: AccessContext) -> Option<Pa> {
self.cache.v2p.borrow_mut().pop(&ctx)
}
/// Clears the entire V2P cache.
///
/// This method is crucial for maintaining consistency when handling events.
/// The guest operating system can modify page tables or other structures
/// related to address translation between events. Using stale translations
/// can lead to incorrect memory access and unexpected behavior.
/// It is recommended to call this method at the beginning of each
/// [`VmiHandler::handle_event`] loop to ensure that you are working with
/// the most up-to-date address mappings.
pub fn flush_v2p_cache(&self) {
self.cache.v2p.borrow_mut().clear();
}
///// Retrieves metrics about the V2P cache.
//pub fn v2p_cache_metrics(&self) -> CacheMetrics {
// let cache = self.cache.v2p.borrow();
// CacheMetrics {
// hits: ...,
// misses: ...,
// }
//}
/// Sets a limit on the length of strings read by the `read_string` methods.
/// If the limit is reached, the string will be truncated.
pub fn with_read_string_length_limit(self, limit_in_bytes: usize) -> Self {
Self {
read_string_length_limit: RefCell::new(Some(limit_in_bytes)),
..self
}
}
/// Returns the current limit on the length of strings read by the
/// `read_string` methods.
pub fn read_string_length_limit(&self) -> Option<usize> {
*self.read_string_length_limit.borrow()
}
/// Sets a limit on the length of strings read by the `read_string` methods.
///
/// This method allows you to set a maximum length (in bytes) for strings
/// read from the virtual machine's memory. When set, string reading
/// operations will truncate their results to this limit. This can be
/// useful for preventing excessively long string reads, which might
/// impact performance or consume too much memory.
///
/// If the limit is reached during a string read operation, the resulting
/// string will be truncated to the specified length.
///
/// To remove the limit, call this method with `None`.
pub fn set_read_string_length_limit(&self, limit: usize) {
*self.read_string_length_limit.borrow_mut() = Some(limit);
}
/// Returns the duration since this `VmiCore` instance was created.
pub fn elapsed(&self) -> Duration {
self.created.elapsed()
}
/// Retrieves information about the virtual machine.
pub fn info(&self) -> Result<VmiInfo, VmiError> {
self.driver.info()
}
/// Pauses the virtual machine.
pub fn pause(&self) -> Result<(), VmiError> {
self.driver.pause()
}
/// Resumes the virtual machine.
pub fn resume(&self) -> Result<(), VmiError> {
self.driver.resume()
}
/// Pauses the virtual machine and returns a guard that will resume it when
/// dropped.
pub fn pause_guard(&self) -> Result<VmiPauseGuard<'_, Driver>, VmiError> {
VmiPauseGuard::new(&self.driver)
}
/// Retrieves the current state of CPU registers for a specified virtual
/// CPU.
///
/// This method allows you to access the current values of CPU registers,
/// which is crucial for understanding the state of the virtual machine
/// at a given point in time.
///
/// # Notes
///
/// The exact structure and content of the returned registers depend on the
/// specific architecture of the VM being introspected. Refer to the
/// documentation of your [`Architecture`] implementation for details on
/// how to interpret the register values.
pub fn registers(
&self,
vcpu: VcpuId,
) -> Result<<Driver::Architecture as Architecture>::Registers, VmiError> {
self.driver.registers(vcpu)
}
/// Sets the registers of a virtual CPU.
pub fn set_registers(
&self,
vcpu: VcpuId,
registers: <Driver::Architecture as Architecture>::Registers,
) -> Result<(), VmiError> {
self.driver.set_registers(vcpu, registers)
}
/// Retrieves the memory access permissions for a specific guest frame
/// number (GFN).
///
/// The returned `MemoryAccess` indicates the current read, write, and
/// execute permissions for the specified memory page in the given view.
pub fn memory_access(&self, gfn: Gfn, view: View) -> Result<MemoryAccess, VmiError> {
self.driver.memory_access(gfn, view)
}
/// Sets the memory access permissions for a specific guest frame number
/// (GFN).
///
/// This method allows you to modify the read, write, and execute
/// permissions for a given memory page in the specified view.
pub fn set_memory_access(
&self,
gfn: Gfn,
view: View,
access: MemoryAccess,
) -> Result<(), VmiError> {
self.driver.set_memory_access(gfn, view, access)
}
/// Allocates the next available guest frame number (GFN).
///
/// This method finds and allocates the next free GFN after the current
/// maximum GFN. It's useful when you need to allocate new memory pages
/// for the VM.
pub fn allocate_next_available_gfn(&self) -> Result<Gfn, VmiError> {
let info = self.info()?;
let next_available_gfn = info.max_gfn + 1;
self.allocate_gfn(next_available_gfn)?;
Ok(next_available_gfn)
}
/// Allocates a specific guest frame number (GFN).
///
/// This method allows you to allocate a particular GFN. It's useful when
/// you need to allocate a specific memory page for the VM.
pub fn allocate_gfn(&self, gfn: Gfn) -> Result<(), VmiError> {
self.driver.allocate_gfn(gfn)
}
/// Frees a previously allocated guest frame number (GFN).
///
/// This method deallocates a GFN that was previously allocated. It's
/// important to free GFNs when they're no longer needed to prevent
/// memory leaks in the VM.
pub fn free_gfn(&self, gfn: Gfn) -> Result<(), VmiError> {
self.driver.free_gfn(gfn)
}
/// Returns the default view for the virtual machine.
///
/// The default view typically represents the normal, unmodified state of
/// the VM's memory.
pub fn default_view(&self) -> View {
self.driver.default_view()
}
/// Creates a new view with the specified default access permissions.
///
/// Views allow for creating different perspectives of the VM's memory,
/// which can be useful for analysis or isolation purposes. The default
/// access permissions apply to memory pages not explicitly modified
/// within this view.
pub fn create_view(&self, default_access: MemoryAccess) -> Result<View, VmiError> {
self.driver.create_view(default_access)
}
/// Destroys a previously created view.
///
/// This method removes a view and frees associated resources. It should be
/// called when a view is no longer needed to prevent resource leaks.
pub fn destroy_view(&self, view: View) -> Result<(), VmiError> {
self.driver.destroy_view(view)
}
/// Switches to a different view for all virtual CPUs.
///
/// This method changes the current active view for all vCPUs, affecting
/// subsequent memory operations across the entire VM. It allows for
/// quick transitions between different memory perspectives globally.
///
/// Note the difference between this method and
/// [`VmiEventResponse::set_view()`]:
/// - `switch_to_view()` changes the view for all vCPUs immediately.
/// - `VmiEventResponse::set_view()` sets the view only for the specific
/// vCPU that received the event, and the change is applied when the event
/// handler returns.
///
/// Use `switch_to_view()` for global view changes, and
/// `VmiEventResponse::set_view()` for targeted, event-specific view
/// modifications on individual vCPUs.
pub fn switch_to_view(&self, view: View) -> Result<(), VmiError> {
self.driver.switch_to_view(view)
}
/// Changes the mapping of a guest frame number (GFN) in a specific view.
///
/// This method allows for remapping a GFN to a different physical frame
/// within a view, enabling fine-grained control over memory layout in
/// different views.
///
/// A notable use case for this method is implementing "stealth hooks":
/// 1. Create a new GFN and copy the contents of the original page to it.
/// 2. Modify the new page by installing a breakpoint (e.g., 0xcc on AMD64)
/// at a strategic location.
/// 3. Use this method to change the mapping of the original GFN to the new
/// one.
/// 4. Set the memory access of the new GFN to non-readable.
///
/// When a read access occurs:
/// - The handler should enable single-stepping.
/// - Switch to an unmodified view (e.g., `default_view`) to execute the
/// read instruction, which will read the original non-breakpoint byte.
/// - Re-enable single-stepping afterwards.
///
/// This technique allows for transparent breakpoints that are difficult to
/// detect by the guest OS or applications.
pub fn change_view_gfn(&self, view: View, old_gfn: Gfn, new_gfn: Gfn) -> Result<(), VmiError> {
self.driver.change_view_gfn(view, old_gfn, new_gfn)
}
/// Resets the mapping of a guest frame number (GFN) in a specific view to
/// its original state.
///
/// This method reverts any custom mapping for the specified GFN in the
/// given view, restoring it to the default mapping.
pub fn reset_view_gfn(&self, view: View, gfn: Gfn) -> Result<(), VmiError> {
self.driver.reset_view_gfn(view, gfn)
}
/// Enables monitoring of specific events.
pub fn monitor_enable(
&self,
option: <Driver::Architecture as Architecture>::EventMonitor,
) -> Result<(), VmiError> {
self.driver.monitor_enable(option)
}
/// Disables monitoring of specific events.
pub fn monitor_disable(
&self,
option: <Driver::Architecture as Architecture>::EventMonitor,
) -> Result<(), VmiError> {
self.driver.monitor_disable(option)
}
/*
/// Enables or disables monitoring of specific CPU registers.
///
/// This method allows for setting up event triggers when certain CPU
/// registers are accessed or modified. The specific registers that can
/// be monitored depend on the architecture and are defined by the
/// [`Architecture::MonitorRegisterOptions`] type.
///
/// When enabled, relevant events will be passed to the event callback
/// function.
pub fn monitor_register(
&self,
enable: bool,
options: <Driver::Architecture as Architecture>::MonitorRegisterOptions,
) -> Result<(), VmiError> {
self.driver.monitor_register(enable, options)
}
/// Enables or disables monitoring of specific interrupts.
///
/// This method sets up event triggers for specified interrupt events. The
/// types of interrupts that can be monitored are defined by the
/// [`Architecture::MonitorInterruptOptions`] type, which is specific to
/// the architecture being used.
///
/// When an interrupt event occurs, it will be passed to the event callback
/// function.
pub fn monitor_interrupt(
&self,
enable: bool,
options: <Driver::Architecture as Architecture>::MonitorInterruptOptions,
) -> Result<(), VmiError> {
self.driver.monitor_interrupt(enable, options)
}
/// Enables or disables single-step monitoring.
///
/// When enabled, this method causes the VMI system to generate an event
/// after each instruction execution in the guest. This can be useful
/// for detailed analysis of guest behavior, but may have a significant
/// performance impact.
///
/// Single-step events will be passed to the event callback function when
/// they occur.
pub fn monitor_singlestep(&self, enable: bool) -> Result<(), VmiError> {
self.driver.monitor_singlestep(enable)
}
/// Enables or disables monitoring of CPUID instruction execution.
///
/// When enabled, this method generates an event each time a CPUID
/// instruction is executed in the guest. This can be useful for
/// analyzing how the guest queries CPU features or for implementing CPU
/// feature spoofing.
///
/// CPUID events will be passed to the event callback function when they
/// occur.
pub fn monitor_cpuid(&self, enable: bool) -> Result<(), VmiError> {
self.driver.monitor_cpuid(enable)
}
/// Enables or disables monitoring of I/O port operations.
///
/// When enabled, this method generates events for I/O port read and write
/// operations performed by the guest. This can be useful for analyzing
/// guest interactions with virtual hardware or for implementing custom
/// virtual device behavior.
///
/// I/O port events will be passed to the event callback function when they
/// occur.
pub fn monitor_io(&self, enable: bool) -> Result<(), VmiError> {
self.driver.monitor_io(enable)
}
*/
/// Injects an interrupt into a specific virtual CPU.
///
/// This method allows for the injection of architecture-specific interrupts
/// into a given vCPU. It can be used to simulate hardware events or to
/// manipulate the guest's execution flow for analysis purposes.
///
/// The type of interrupt and its parameters are defined by the
/// architecture-specific [`Architecture::Interrupt`] type.
pub fn inject_interrupt(
&self,
vcpu: VcpuId,
interrupt: <Driver::Architecture as Architecture>::Interrupt,
) -> Result<(), VmiError> {
self.driver.inject_interrupt(vcpu, interrupt)
}
/// Returns the number of pending events.
///
/// This method provides a count of events that have occurred but have not
/// yet been processed.
pub fn events_pending(&self) -> usize {
self.driver.events_pending()
}
/// Returns the time spent processing events by the driver.
///
/// This method provides a measure of the overhead introduced by event
/// processing. It can be useful for performance tuning and
/// understanding the impact of VMI operations on overall system
/// performance.
pub fn event_processing_overhead(&self) -> Duration {
self.driver.event_processing_overhead()
}
/// Waits for an event to occur and processes it with the provided handler.
///
/// This method blocks until an event occurs or the specified timeout is
/// reached. When an event occurs, it is passed to the provided callback
/// function for processing.
pub fn wait_for_event<'a>(
&'a self,
timeout: Duration,
handler: Box<VmiEventCallback<'a, Driver::Architecture>>,
) -> Result<(), VmiError> {
self.driver.wait_for_event(timeout, handler)
}
/// Resets the state of the VMI system.
///
/// This method clears all event monitors, caches, and any other stateful
/// data maintained by the VMI system. It's useful for bringing the VMI
/// system back to a known clean state, which can be necessary when
/// switching between different analysis tasks or recovering from error
/// conditions.
pub fn reset_state(&self) -> Result<(), VmiError> {
self.driver.reset_state()
}
/// Reads memory from the virtual machine.
pub fn read(&self, ctx: impl Into<AccessContext>, buffer: &mut [u8]) -> Result<(), VmiError> {
let ctx = ctx.into();
let mut position = 0usize;
let mut remaining = buffer.len();
while remaining > 0 {
let address = self.translate_access_context(ctx + position as u64)?;
let gfn = Driver::Architecture::gfn_from_pa(address);
let offset = Driver::Architecture::pa_offset(address) as usize;
let page = self.read_page(gfn)?;
let page = &page[offset..];
let size = std::cmp::min(remaining, page.len());
buffer[position..position + size].copy_from_slice(&page[..size]);
position += size;
remaining -= size;
}
Ok(())
}
/// Writes memory to the virtual machine.
pub fn write(&self, ctx: impl Into<AccessContext>, buffer: &[u8]) -> Result<(), VmiError> {
let ctx = ctx.into();
let mut position = 0usize;
let mut remaining = buffer.len();
let page_size = self.info()?.page_size;
while remaining > 0 {
let address = self.translate_access_context(ctx + position as u64)?;
let gfn = Driver::Architecture::gfn_from_pa(address);
let offset = Driver::Architecture::pa_offset(address);
let size = std::cmp::min(remaining, (page_size - offset) as usize);
let content = &buffer[position..position + size];
self.driver.write_page(gfn, offset, content)?;
position += size;
remaining -= size;
}
Ok(())
}
/// Reads a single byte from the virtual machine.
pub fn read_u8(&self, ctx: impl Into<AccessContext>) -> Result<u8, VmiError> {
let mut buffer = [0u8; 1];
self.read(ctx, &mut buffer)?;
Ok(buffer[0])
}
/// Reads a 16-bit unsigned integer from the virtual machine.
pub fn read_u16(&self, ctx: impl Into<AccessContext>) -> Result<u16, VmiError> {
let mut buffer = [0u8; 2];
self.read(ctx, &mut buffer)?;
Ok(u16::from_le_bytes(buffer))
}
/// Reads a 32-bit unsigned integer from the virtual machine.
pub fn read_u32(&self, ctx: impl Into<AccessContext>) -> Result<u32, VmiError> {
let mut buffer = [0u8; 4];
self.read(ctx, &mut buffer)?;
Ok(u32::from_le_bytes(buffer))
}
/// Reads a 64-bit unsigned integer from the virtual machine.
pub fn read_u64(&self, ctx: impl Into<AccessContext>) -> Result<u64, VmiError> {
let mut buffer = [0u8; 8];
self.read(ctx, &mut buffer)?;
Ok(u64::from_le_bytes(buffer))
}
/// Reads an address-sized unsigned integer from the virtual machine.
///
/// This method reads an address of the specified width (in bytes) from
/// the given access context. It's useful when dealing with architectures
/// that can operate in different address modes.
pub fn read_address(
&self,
ctx: impl Into<AccessContext>,
address_width: usize,
) -> Result<u64, VmiError> {
match address_width {
4 => self.read_address32(ctx),
8 => self.read_address64(ctx),
_ => Err(VmiError::InvalidAddressWidth),
}
}
/// Reads a 32-bit address from the virtual machine.
pub fn read_address32(&self, ctx: impl Into<AccessContext>) -> Result<u64, VmiError> {
Ok(self.read_u32(ctx)? as u64)
}
/// Reads a 64-bit address from the virtual machine.
pub fn read_address64(&self, ctx: impl Into<AccessContext>) -> Result<u64, VmiError> {
self.read_u64(ctx)
}
/// Reads a virtual address from the virtual machine.
pub fn read_va(
&self,
ctx: impl Into<AccessContext>,
address_width: usize,
) -> Result<Va, VmiError> {
Ok(Va(self.read_address(ctx, address_width)?))
}
/// Reads a 32-bit virtual address from the virtual machine.
pub fn read_va32(&self, ctx: impl Into<AccessContext>) -> Result<Va, VmiError> {
Ok(Va(self.read_address32(ctx)?))
}
/// Reads a 64-bit virtual address from the virtual machine.
pub fn read_va64(&self, ctx: impl Into<AccessContext>) -> Result<Va, VmiError> {
Ok(Va(self.read_address64(ctx)?))
}
/// Reads a null-terminated string of bytes from the virtual machine with a
/// specified limit.
pub fn read_string_bytes_limited(
&self,
ctx: impl Into<AccessContext>,
limit: usize,
) -> Result<Vec<u8>, VmiError> {
let mut ctx = ctx.into();
// read until the end of page
let mut buffer = vec![
0u8;
(Driver::Architecture::PAGE_SIZE - (ctx.address & !Driver::Architecture::PAGE_MASK))
as usize
];
self.read(ctx, &mut buffer)?;
// try to find the null terminator
let position = buffer.iter().position(|&b| b == 0);
if let Some(position) = position {
buffer.truncate(limit.min(position));
return Ok(buffer);
}
let mut page = [0u8; 4096_usize]; // FIXME: Driver::Architecture::PAGE_SIZE
loop {
ctx.address += buffer.len() as u64;
self.read(ctx, &mut page)?;
let position = page.iter().position(|&b| b == 0);
if let Some(position) = position {
buffer.extend_from_slice(&page[..position]);
if buffer.len() >= limit {
buffer.truncate(limit);
}
break;
}
buffer.extend_from_slice(&page);
if buffer.len() >= limit {
buffer.truncate(limit);
break;
}
}
Ok(buffer)
}
/// Reads a null-terminated string of bytes from the virtual machine.
pub fn read_string_bytes(&self, ctx: impl Into<AccessContext>) -> Result<Vec<u8>, VmiError> {
self.read_string_bytes_limited(
ctx,
self.read_string_length_limit.borrow().unwrap_or(usize::MAX),
)
}
/// Reads a null-terminated wide string (UTF-16) from the virtual machine
/// with a specified limit.
pub fn read_wstring_bytes_limited(
&self,
ctx: impl Into<AccessContext>,
limit: usize,
) -> Result<Vec<u16>, VmiError> {
let mut ctx = ctx.into();
// read until the end of page
let mut buffer = vec![
0u8;
(Driver::Architecture::PAGE_SIZE - (ctx.address & !Driver::Architecture::PAGE_MASK))
as usize
];
self.read(ctx, &mut buffer)?;
// try to find the null terminator
let position = buffer
.chunks_exact(2)
.position(|chunk| chunk[0] == 0 && chunk[1] == 0);
if let Some(position) = position {
buffer.truncate(limit.min(position * 2));
return Ok(buffer
.chunks_exact(2)
.map(|chunk| u16::from_le_bytes([chunk[0], chunk[1]]))
.collect());
}
let mut page = [0u8; 4096_usize]; // FIXME: Driver::Architecture::PAGE_SIZE
loop {
ctx.address += buffer.len() as u64;
self.read(ctx, &mut page)?;
let position = page
.chunks_exact(2)
.position(|chunk| chunk[0] == 0 && chunk[1] == 0);
if let Some(position) = position {
buffer.extend_from_slice(&page[..position * 2]);
if buffer.len() >= limit {
buffer.truncate(limit);
}
break;
}
buffer.extend_from_slice(&page);
if buffer.len() >= limit {
buffer.truncate(limit);
break;
}
}
Ok(buffer
.chunks_exact(2)
.map(|chunk| u16::from_le_bytes([chunk[0], chunk[1]]))
.collect())
}
/// Reads a null-terminated wide string (UTF-16) from the virtual machine.
pub fn read_wstring_bytes(&self, ctx: impl Into<AccessContext>) -> Result<Vec<u16>, VmiError> {
self.read_wstring_bytes_limited(
ctx,
self.read_string_length_limit.borrow().unwrap_or(usize::MAX),
)
}
/// Reads a null-terminated string from the virtual machine with a specified
/// limit.
pub fn read_string_limited(
&self,
ctx: impl Into<AccessContext>,
limit: usize,
) -> Result<String, VmiError> {
Ok(String::from_utf8_lossy(&self.read_string_bytes_limited(ctx, limit)?).into())
}
/// Reads a null-terminated string from the virtual machine.
pub fn read_string(&self, ctx: impl Into<AccessContext>) -> Result<String, VmiError> {
self.read_string_limited(
ctx,
self.read_string_length_limit.borrow().unwrap_or(usize::MAX),
)
}
/// Reads a null-terminated wide string (UTF-16) from the virtual machine
/// with a specified limit.
pub fn read_wstring_limited(
&self,
ctx: impl Into<AccessContext>,
limit: usize,
) -> Result<String, VmiError> {
Ok(String::from_utf16_lossy(
&self.read_wstring_bytes_limited(ctx, limit)?,
))
}
/// Reads a null-terminated wide string (UTF-16) from the virtual machine.
pub fn read_wstring(&self, ctx: impl Into<AccessContext>) -> Result<String, VmiError> {
self.read_wstring_limited(
ctx,
self.read_string_length_limit.borrow().unwrap_or(usize::MAX),
)
}
/// Reads a struct from the virtual machine.
pub fn read_struct<T>(&self, ctx: impl Into<AccessContext>) -> Result<T, VmiError>
where
T: FromBytes + IntoBytes,
{
let mut result = T::new_zeroed();
self.read(ctx, result.as_mut_bytes())?;
Ok(result)
}
/// Writes a single byte to the virtual machine.
pub fn write_u8(&self, ctx: impl Into<AccessContext>, value: u8) -> Result<(), VmiError> {
self.write(ctx, &value.to_le_bytes())
}
/// Writes a 16-bit unsigned integer to the virtual machine.
pub fn write_u16(&self, ctx: impl Into<AccessContext>, value: u16) -> Result<(), VmiError> {
self.write(ctx, &value.to_le_bytes())
}
/// Writes a 32-bit unsigned integer to the virtual machine.
pub fn write_u32(&self, ctx: impl Into<AccessContext>, value: u32) -> Result<(), VmiError> {
self.write(ctx, &value.to_le_bytes())
}
/// Writes a 64-bit unsigned integer to the virtual machine.
pub fn write_u64(&self, ctx: impl Into<AccessContext>, value: u64) -> Result<(), VmiError> {
self.write(ctx, &value.to_le_bytes())
}
/// Writes a struct to the virtual machine.
pub fn write_struct<T>(&self, ctx: impl Into<AccessContext>, value: T) -> Result<(), VmiError>
where
T: IntoBytes + Immutable,
{
self.write(ctx, value.as_bytes())
}
/// Translates a virtual address to a physical address.
pub fn translate_address(&self, ctx: impl Into<AddressContext>) -> Result<Pa, VmiError> {
self.translate_access_context(AccessContext::from(ctx.into()))
}
/// Translates an access context to a physical address.
pub fn translate_access_context(&self, ctx: AccessContext) -> Result<Pa, VmiError> {
(self.translate_access_context_fn)(self, ctx)
}
/// Reads a page of memory from the virtual machine.
pub fn read_page(&self, gfn: Gfn) -> Result<VmiMappedPage, VmiError> {
(self.read_page_fn)(self, gfn)
}
/// Reads a page of memory from the virtual machine without using the cache.
fn read_page_nocache(&self, gfn: Gfn) -> Result<VmiMappedPage, VmiError> {
self.driver.read_page(gfn)
}
/// Reads a page of memory from the virtual machine, using the cache if
/// enabled.
fn read_page_cache(&self, gfn: Gfn) -> Result<VmiMappedPage, VmiError> {
let mut cache = self.cache.gfn.borrow_mut();
let value = cache.try_get_or_insert(gfn, || self.read_page_nocache(gfn))?;
// Mapped pages are reference counted, so cloning it is cheap.
Ok(value.clone())
}
/// Translates an access context to a physical address without using the
/// cache.
///
/// # Notes
///
/// If [`TranslationMechanism::Paging`] is used, the `root` must be present.
/// In case the root is not present, a [`VmiError::RootNotPresent`] error is
/// returned.
fn translate_access_context_nocache(&self, ctx: AccessContext) -> Result<Pa, VmiError> {
Ok(match ctx.mechanism {
TranslationMechanism::Direct => Pa(ctx.address),
TranslationMechanism::Paging { root } => match root {
Some(root) => <Driver::Architecture as Architecture>::translate_address(
self,
ctx.address.into(),
root,
)?,
None => return Err(VmiError::RootNotPresent),
},
})
}
/// Translates an access context to a physical address, using the cache if
/// enabled.
fn translate_access_context_cache(&self, ctx: AccessContext) -> Result<Pa, VmiError> {
let mut cache = self.cache.v2p.borrow_mut();
let value = cache.try_get_or_insert(ctx, || self.translate_access_context_nocache(ctx))?;
Ok(*value)
}
}
/// A guard that pauses the virtual machine on creation and resumes it on drop.
pub struct VmiPauseGuard<'a, Driver>
where
Driver: VmiDriver,
{
driver: &'a Driver,
}
impl<'a, Driver> VmiPauseGuard<'a, Driver>
where
Driver: VmiDriver,
{
/// Creates a new pause guard.
pub fn new(driver: &'a Driver) -> Result<Self, VmiError> {
driver.pause()?;
Ok(Self { driver })
}
}
impl<Driver> Drop for VmiPauseGuard<'_, Driver>
where
Driver: VmiDriver,
{
fn drop(&mut self) {
if let Err(err) = self.driver.resume() {
tracing::error!(?err, "Failed to resume the virtual machine");
}
}
}