1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright (C) 2019 CrowdStrike, Inc. All rights reserved.
// SPDX-License-Identifier: Apache-2.0 OR BSD-3-Clause

//! Helper structure for working with mmaped memory regions in Windows.

use std;
use std::io;
use std::os::windows::io::{AsRawHandle, RawHandle};
use std::ptr::{null, null_mut};

use libc::{c_void, size_t};

use winapi::um::errhandlingapi::GetLastError;

use crate::bitmap::{Bitmap, BS};
use crate::guest_memory::FileOffset;
use crate::mmap::{AsSlice, NewBitmap};
use crate::volatile_memory::{self, compute_offset, VolatileMemory, VolatileSlice};

#[allow(non_snake_case)]
#[link(name = "kernel32")]
extern "stdcall" {
    pub fn VirtualAlloc(
        lpAddress: *mut c_void,
        dwSize: size_t,
        flAllocationType: u32,
        flProtect: u32,
    ) -> *mut c_void;

    pub fn VirtualFree(lpAddress: *mut c_void, dwSize: size_t, dwFreeType: u32) -> u32;

    pub fn CreateFileMappingA(
        hFile: RawHandle,                       // HANDLE
        lpFileMappingAttributes: *const c_void, // LPSECURITY_ATTRIBUTES
        flProtect: u32,                         // DWORD
        dwMaximumSizeHigh: u32,                 // DWORD
        dwMaximumSizeLow: u32,                  // DWORD
        lpName: *const u8,                      // LPCSTR
    ) -> RawHandle; // HANDLE

    pub fn MapViewOfFile(
        hFileMappingObject: RawHandle,
        dwDesiredAccess: u32,
        dwFileOffsetHigh: u32,
        dwFileOffsetLow: u32,
        dwNumberOfBytesToMap: size_t,
    ) -> *mut c_void;

    pub fn CloseHandle(hObject: RawHandle) -> u32; // BOOL
}

const MM_HIGHEST_VAD_ADDRESS: u64 = 0x000007FFFFFDFFFF;

const MEM_COMMIT: u32 = 0x00001000;
const MEM_RELEASE: u32 = 0x00008000;
const FILE_MAP_ALL_ACCESS: u32 = 0xf001f;
const PAGE_READWRITE: u32 = 0x04;

pub const MAP_FAILED: *mut c_void = 0 as *mut c_void;
pub const INVALID_HANDLE_VALUE: RawHandle = (-1isize) as RawHandle;
#[allow(dead_code)]
pub const ERROR_INVALID_PARAMETER: i32 = 87;

/// Helper structure for working with mmaped memory regions in Unix.
///
/// The structure is used for accessing the guest's physical memory by mmapping it into
/// the current process.
///
/// # Limitations
/// When running a 64-bit virtual machine on a 32-bit hypervisor, only part of the guest's
/// physical memory may be mapped into the current process due to the limited virtual address
/// space size of the process.
#[derive(Debug)]
pub struct MmapRegion<B> {
    addr: *mut u8,
    size: usize,
    bitmap: B,
    file_offset: Option<FileOffset>,
}

// Send and Sync aren't automatically inherited for the raw address pointer.
// Accessing that pointer is only done through the stateless interface which
// allows the object to be shared by multiple threads without a decrease in
// safety.
unsafe impl<B: Send> Send for MmapRegion<B> {}
unsafe impl<B: Sync> Sync for MmapRegion<B> {}

impl<B: NewBitmap> MmapRegion<B> {
    /// Creates a shared anonymous mapping of `size` bytes.
    ///
    /// # Arguments
    /// * `size` - The size of the memory region in bytes.
    pub fn new(size: usize) -> io::Result<Self> {
        if (size == 0) || (size > MM_HIGHEST_VAD_ADDRESS as usize) {
            return Err(io::Error::from_raw_os_error(libc::EINVAL));
        }
        // This is safe because we are creating an anonymous mapping in a place not already used by
        // any other area in this process.
        let addr = unsafe { VirtualAlloc(0 as *mut c_void, size, MEM_COMMIT, PAGE_READWRITE) };
        if addr == MAP_FAILED {
            return Err(io::Error::last_os_error());
        }
        Ok(Self {
            addr: addr as *mut u8,
            size,
            bitmap: B::with_len(size),
            file_offset: None,
        })
    }

    /// Creates a shared file mapping of `size` bytes.
    ///
    /// # Arguments
    /// * `file_offset` - The mapping will be created at offset `file_offset.start` in the file
    ///                   referred to by `file_offset.file`.
    /// * `size` - The size of the memory region in bytes.
    pub fn from_file(file_offset: FileOffset, size: usize) -> io::Result<Self> {
        let handle = file_offset.file().as_raw_handle();
        if handle == INVALID_HANDLE_VALUE {
            return Err(io::Error::from_raw_os_error(libc::EBADF));
        }

        let mapping = unsafe {
            CreateFileMappingA(
                handle,
                null(),
                PAGE_READWRITE,
                (size >> 32) as u32,
                size as u32,
                null(),
            )
        };
        if mapping == 0 as RawHandle {
            return Err(io::Error::last_os_error());
        }

        let offset = file_offset.start();

        // This is safe because we are creating a mapping in a place not already used by any other
        // area in this process.
        let addr = unsafe {
            MapViewOfFile(
                mapping,
                FILE_MAP_ALL_ACCESS,
                (offset >> 32) as u32,
                offset as u32,
                size,
            )
        };

        unsafe {
            CloseHandle(mapping);
        }

        if addr == null_mut() {
            return Err(io::Error::last_os_error());
        }
        Ok(Self {
            addr: addr as *mut u8,
            size,
            bitmap: B::with_len(size),
            file_offset: Some(file_offset),
        })
    }
}

impl<B: Bitmap> MmapRegion<B> {
    /// Returns a pointer to the beginning of the memory region. Mutable accesses performed
    /// using the resulting pointer are not automatically accounted for by the dirty bitmap
    /// tracking functionality.
    ///
    /// Should only be used for passing this region to ioctls for setting guest memory.
    pub fn as_ptr(&self) -> *mut u8 {
        self.addr
    }

    /// Returns the size of this region.
    pub fn size(&self) -> usize {
        self.size
    }

    /// Returns information regarding the offset into the file backing this region (if any).
    pub fn file_offset(&self) -> Option<&FileOffset> {
        self.file_offset.as_ref()
    }

    /// Returns a reference to the inner bitmap object.
    pub fn bitmap(&self) -> &B {
        &self.bitmap
    }
}

impl<B> AsSlice for MmapRegion<B> {
    unsafe fn as_slice(&self) -> &[u8] {
        // This is safe because we mapped the area at addr ourselves, so this slice will not
        // overflow. However, it is possible to alias.
        std::slice::from_raw_parts(self.addr, self.size)
    }

    #[allow(clippy::mut_from_ref)]
    unsafe fn as_mut_slice(&self) -> &mut [u8] {
        // This is safe because we mapped the area at addr ourselves, so this slice will not
        // overflow. However, it is possible to alias.
        std::slice::from_raw_parts_mut(self.addr, self.size)
    }
}

impl<B: Bitmap> VolatileMemory for MmapRegion<B> {
    type B = B;

    fn len(&self) -> usize {
        self.size
    }

    fn get_slice(
        &self,
        offset: usize,
        count: usize,
    ) -> volatile_memory::Result<VolatileSlice<BS<Self::B>>> {
        let end = compute_offset(offset, count)?;
        if end > self.size {
            return Err(volatile_memory::Error::OutOfBounds { addr: end });
        }

        // Safe because we checked that offset + count was within our range and we only ever hand
        // out volatile accessors.
        Ok(unsafe {
            VolatileSlice::with_bitmap(
                (self.addr as usize + offset) as *mut _,
                count,
                self.bitmap.slice_at(offset),
            )
        })
    }
}

impl<B> Drop for MmapRegion<B> {
    fn drop(&mut self) {
        // This is safe because we mmap the area at addr ourselves, and nobody
        // else is holding a reference to it.
        // Note that the size must be set to 0 when using MEM_RELEASE,
        // otherwise the function fails.
        unsafe {
            let ret_val = VirtualFree(self.addr as *mut libc::c_void, 0, MEM_RELEASE);
            if ret_val == 0 {
                let err = GetLastError();
                // We can't use any fancy logger here, yet we want to
                // pin point memory leaks.
                println!(
                    "WARNING: Could not deallocate mmap region. \
                     Address: {:?}. Size: {}. Error: {}",
                    self.addr, self.size, err
                )
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use std::os::windows::io::FromRawHandle;

    use crate::bitmap::AtomicBitmap;
    use crate::guest_memory::FileOffset;
    use crate::mmap_windows::INVALID_HANDLE_VALUE;

    type MmapRegion = super::MmapRegion<()>;

    #[test]
    fn map_invalid_handle() {
        let file = unsafe { std::fs::File::from_raw_handle(INVALID_HANDLE_VALUE) };
        let file_offset = FileOffset::new(file, 0);
        let e = MmapRegion::from_file(file_offset, 1024).unwrap_err();
        assert_eq!(e.raw_os_error(), Some(libc::EBADF));
    }

    #[test]
    fn test_dirty_tracking() {
        // Using the `crate` prefix because we aliased `MmapRegion` to `MmapRegion<()>` for
        // the rest of the unit tests above.
        let m = crate::MmapRegion::<AtomicBitmap>::new(0x1_0000).unwrap();
        crate::bitmap::tests::test_volatile_memory(&m);
    }
}