1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
// Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//! Module containing versions of the standard library's [`Read`](std::io::Read) and
//! [`Write`](std::io::Write) traits compatible with volatile memory accesses.
use crate::bitmap::BitmapSlice;
use crate::volatile_memory::copy_slice_impl::{copy_from_volatile_slice, copy_to_volatile_slice};
use crate::{VolatileMemoryError, VolatileSlice};
use std::io::{Cursor, ErrorKind, Stdout};
use std::os::fd::AsRawFd;
/// A version of the standard library's [`Read`](std::io::Read) trait that operates on volatile
/// memory instead of slices
///
/// This trait is needed as rust slices (`&[u8]` and `&mut [u8]`) cannot be used when operating on
/// guest memory [1].
///
/// [1]: https://github.com/rust-vmm/vm-memory/pull/217
pub trait ReadVolatile {
/// Tries to read some bytes into the given [`VolatileSlice`] buffer, returning how many bytes
/// were read.
///
/// The behavior of implementations should be identical to [`Read::read`](std::io::Read::read)
fn read_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError>;
/// Tries to fill the given [`VolatileSlice`] buffer by reading from `self` returning an error
/// if insufficient bytes could be read.
///
/// The default implementation is identical to that of [`Read::read_exact`](std::io::Read::read_exact)
fn read_exact_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<(), VolatileMemoryError> {
// Implementation based on https://github.com/rust-lang/rust/blob/7e7483d26e3cec7a44ef00cf7ae6c9c8c918bec6/library/std/src/io/mod.rs#L465
let mut partial_buf = buf.offset(0)?;
while !partial_buf.is_empty() {
match self.read_volatile(&mut partial_buf) {
Err(VolatileMemoryError::IOError(err)) if err.kind() == ErrorKind::Interrupted => {
continue
}
Ok(0) => {
return Err(VolatileMemoryError::IOError(std::io::Error::new(
ErrorKind::UnexpectedEof,
"failed to fill whole buffer",
)))
}
Ok(bytes_read) => partial_buf = partial_buf.offset(bytes_read)?,
Err(err) => return Err(err),
}
}
Ok(())
}
}
/// A version of the standard library's [`Write`](std::io::Write) trait that operates on volatile
/// memory instead of slices.
///
/// This trait is needed as rust slices (`&[u8]` and `&mut [u8]`) cannot be used when operating on
/// guest memory [1].
///
/// [1]: https://github.com/rust-vmm/vm-memory/pull/217
pub trait WriteVolatile {
/// Tries to write some bytes from the given [`VolatileSlice`] buffer, returning how many bytes
/// were written.
///
/// The behavior of implementations should be identical to [`Write::write`](std::io::Write::write)
fn write_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError>;
/// Tries write the entire content of the given [`VolatileSlice`] buffer to `self` returning an
/// error if not all bytes could be written.
///
/// The default implementation is identical to that of [`Write::write_all`](std::io::Write::write_all)
fn write_all_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<(), VolatileMemoryError> {
// Based on https://github.com/rust-lang/rust/blob/7e7483d26e3cec7a44ef00cf7ae6c9c8c918bec6/library/std/src/io/mod.rs#L1570
let mut partial_buf = buf.offset(0)?;
while !partial_buf.is_empty() {
match self.write_volatile(&partial_buf) {
Err(VolatileMemoryError::IOError(err)) if err.kind() == ErrorKind::Interrupted => {
continue
}
Ok(0) => {
return Err(VolatileMemoryError::IOError(std::io::Error::new(
ErrorKind::WriteZero,
"failed to write whole buffer",
)))
}
Ok(bytes_written) => partial_buf = partial_buf.offset(bytes_written)?,
Err(err) => return Err(err),
}
}
Ok(())
}
}
// We explicitly implement our traits for [`std::fs::File`] and [`std::os::unix::net::UnixStream`]
// instead of providing blanket implementation for [`AsRawFd`] due to trait coherence limitations: A
// blanket implementation would prevent us from providing implementations for `&mut [u8]` below, as
// "an upstream crate could implement AsRawFd for &mut [u8]`.
macro_rules! impl_read_write_volatile_for_raw_fd {
($raw_fd_ty:ty) => {
impl ReadVolatile for $raw_fd_ty {
fn read_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
read_volatile_raw_fd(self, buf)
}
}
impl WriteVolatile for $raw_fd_ty {
fn write_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
write_volatile_raw_fd(self, buf)
}
}
};
}
impl WriteVolatile for Stdout {
fn write_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
write_volatile_raw_fd(self, buf)
}
}
impl_read_write_volatile_for_raw_fd!(std::fs::File);
impl_read_write_volatile_for_raw_fd!(std::os::unix::net::UnixStream);
impl_read_write_volatile_for_raw_fd!(std::os::fd::OwnedFd);
impl_read_write_volatile_for_raw_fd!(std::os::fd::BorrowedFd<'_>);
/// Tries to do a single `read` syscall on the provided file descriptor, storing the data raed in
/// the given [`VolatileSlice`].
///
/// Returns the numbers of bytes read.
fn read_volatile_raw_fd<Fd: AsRawFd>(
raw_fd: &mut Fd,
buf: &mut VolatileSlice<impl BitmapSlice>,
) -> Result<usize, VolatileMemoryError> {
let fd = raw_fd.as_raw_fd();
let guard = buf.ptr_guard_mut();
let dst = guard.as_ptr().cast::<libc::c_void>();
// SAFETY: We got a valid file descriptor from `AsRawFd`. The memory pointed to by `dst` is
// valid for writes of length `buf.len() by the invariants upheld by the constructor
// of `VolatileSlice`.
let bytes_read = unsafe { libc::read(fd, dst, buf.len()) };
if bytes_read < 0 {
// We don't know if a partial read might have happened, so mark everything as dirty
buf.bitmap().mark_dirty(0, buf.len());
Err(VolatileMemoryError::IOError(std::io::Error::last_os_error()))
} else {
let bytes_read = bytes_read.try_into().unwrap();
buf.bitmap().mark_dirty(0, bytes_read);
Ok(bytes_read)
}
}
/// Tries to do a single `write` syscall on the provided file descriptor, attempting to write the
/// data stored in the given [`VolatileSlice`].
///
/// Returns the numbers of bytes written.
fn write_volatile_raw_fd<Fd: AsRawFd>(
raw_fd: &mut Fd,
buf: &VolatileSlice<impl BitmapSlice>,
) -> Result<usize, VolatileMemoryError> {
let fd = raw_fd.as_raw_fd();
let guard = buf.ptr_guard();
let src = guard.as_ptr().cast::<libc::c_void>();
// SAFETY: We got a valid file descriptor from `AsRawFd`. The memory pointed to by `src` is
// valid for reads of length `buf.len() by the invariants upheld by the constructor
// of `VolatileSlice`.
let bytes_written = unsafe { libc::write(fd, src, buf.len()) };
if bytes_written < 0 {
Err(VolatileMemoryError::IOError(std::io::Error::last_os_error()))
} else {
Ok(bytes_written.try_into().unwrap())
}
}
impl WriteVolatile for &mut [u8] {
fn write_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
let total = buf.len().min(self.len());
let src = buf.subslice(0, total)?;
// SAFETY:
// We check above that `src` is contiguously allocated memory of length `total <= self.len())`.
// Furthermore, both src and dst of the call to
// copy_from_volatile_slice are valid for reads and writes respectively of length `total`
// since total is the minimum of lengths of the memory areas pointed to. The areas do not
// overlap, since `dst` is inside guest memory, and buf is a slice (no slices to guest
// memory are possible without violating rust's aliasing rules).
let written = unsafe { copy_from_volatile_slice(self.as_mut_ptr(), &src, total) };
// Advance the slice, just like the stdlib: https://doc.rust-lang.org/src/std/io/impls.rs.html#335
*self = std::mem::take(self).split_at_mut(written).1;
Ok(written)
}
fn write_all_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<(), VolatileMemoryError> {
// Based on https://github.com/rust-lang/rust/blob/f7b831ac8a897273f78b9f47165cf8e54066ce4b/library/std/src/io/impls.rs#L376-L382
if self.write_volatile(buf)? == buf.len() {
Ok(())
} else {
Err(VolatileMemoryError::IOError(std::io::Error::new(
ErrorKind::WriteZero,
"failed to write whole buffer",
)))
}
}
}
impl ReadVolatile for &[u8] {
fn read_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
let total = buf.len().min(self.len());
let dst = buf.subslice(0, total)?;
// SAFETY:
// We check above that `dst` is contiguously allocated memory of length `total <= self.len())`.
// Furthermore, both src and dst of the call to copy_to_volatile_slice are valid for reads
// and writes respectively of length `total` since total is the minimum of lengths of the
// memory areas pointed to. The areas do not overlap, since `dst` is inside guest memory,
// and buf is a slice (no slices to guest memory are possible without violating rust's aliasing rules).
let read = unsafe { copy_to_volatile_slice(&dst, self.as_ptr(), total) };
// Advance the slice, just like the stdlib: https://doc.rust-lang.org/src/std/io/impls.rs.html#232-310
*self = self.split_at(read).1;
Ok(read)
}
fn read_exact_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<(), VolatileMemoryError> {
// Based on https://github.com/rust-lang/rust/blob/f7b831ac8a897273f78b9f47165cf8e54066ce4b/library/std/src/io/impls.rs#L282-L302
if buf.len() > self.len() {
return Err(VolatileMemoryError::IOError(std::io::Error::new(
ErrorKind::UnexpectedEof,
"failed to fill whole buffer",
)));
}
self.read_volatile(buf).map(|_| ())
}
}
// WriteVolatile implementation for Vec<u8> is based upon the Write impl for Vec, which
// defers to Vec::append_elements, after which the below functionality is modelled.
impl WriteVolatile for Vec<u8> {
fn write_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
let count = buf.len();
self.reserve(count);
let len = self.len();
// SAFETY: Calling Vec::reserve() above guarantees the the backing storage of the Vec has
// length at least `len + count`. This means that self.as_mut_ptr().add(len) remains within
// the same allocated object, the offset does not exceed isize (as otherwise reserve would
// have panicked), and does not rely on address space wrapping around.
// In particular, the entire `count` bytes after `self.as_mut_ptr().add(count)` is
// contiguously allocated and valid for writes.
// Lastly, `copy_to_volatile_slice` correctly initialized `copied_len` additional bytes
// in the Vec's backing storage, and we assert this to be equal to `count`. Additionally,
// `len + count` is at most the reserved capacity of the vector. Thus the call to `set_len`
// is safe.
unsafe {
let copied_len = copy_from_volatile_slice(self.as_mut_ptr().add(len), buf, count);
assert_eq!(copied_len, count);
self.set_len(len + count);
}
Ok(count)
}
}
// ReadVolatile and WriteVolatile implementations for Cursor<T> is modelled after the standard
// library's implementation (modulo having to inline `Cursor::remaining_slice`, as that's nightly only)
impl<T> ReadVolatile for Cursor<T>
where
T: AsRef<[u8]>,
{
fn read_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
let inner = self.get_ref().as_ref();
let len = self.position().min(inner.len() as u64);
let n = ReadVolatile::read_volatile(&mut &inner[(len as usize)..], buf)?;
self.set_position(self.position() + n as u64);
Ok(n)
}
fn read_exact_volatile<B: BitmapSlice>(
&mut self,
buf: &mut VolatileSlice<B>,
) -> Result<(), VolatileMemoryError> {
let inner = self.get_ref().as_ref();
let n = buf.len();
let len = self.position().min(inner.len() as u64);
ReadVolatile::read_exact_volatile(&mut &inner[(len as usize)..], buf)?;
self.set_position(self.position() + n as u64);
Ok(())
}
}
impl WriteVolatile for Cursor<&mut [u8]> {
fn write_volatile<B: BitmapSlice>(
&mut self,
buf: &VolatileSlice<B>,
) -> Result<usize, VolatileMemoryError> {
let pos = self.position().min(self.get_ref().len() as u64);
let n = WriteVolatile::write_volatile(&mut &mut self.get_mut()[(pos as usize)..], buf)?;
self.set_position(self.position() + n as u64);
Ok(n)
}
// no write_all provided in standard library, since our default for write_all is based on the
// standard library's write_all, omitting it here as well will correctly mimic stdlib behavior.
}
#[cfg(test)]
mod tests {
use crate::io::{ReadVolatile, WriteVolatile};
use crate::{VolatileMemoryError, VolatileSlice};
use std::io::{Cursor, ErrorKind, Read, Seek, Write};
use vmm_sys_util::tempfile::TempFile;
// ---- Test ReadVolatile for &[u8] ----
fn read_4_bytes_to_5_byte_memory(source: Vec<u8>, expected_output: [u8; 5]) {
// Test read_volatile for &[u8] works
let mut memory = vec![0u8; 5];
assert_eq!(
(&source[..])
.read_volatile(&mut VolatileSlice::from(&mut memory[..4]))
.unwrap(),
source.len().min(4)
);
assert_eq!(&memory, &expected_output);
// Test read_exact_volatile for &[u8] works
let mut memory = vec![0u8; 5];
let result = (&source[..]).read_exact_volatile(&mut VolatileSlice::from(&mut memory[..4]));
// read_exact fails if there are not enough bytes in input to completely fill
// memory[..4]
if source.len() < 4 {
match result.unwrap_err() {
VolatileMemoryError::IOError(ioe) => {
assert_eq!(ioe.kind(), ErrorKind::UnexpectedEof)
}
err => panic!("{:?}", err),
}
assert_eq!(memory, vec![0u8; 5]);
} else {
result.unwrap();
assert_eq!(&memory, &expected_output);
}
}
// ---- Test ReadVolatile for File ----
fn read_4_bytes_from_file(source: Vec<u8>, expected_output: [u8; 5]) {
let mut temp_file = TempFile::new().unwrap().into_file();
temp_file.write_all(source.as_ref()).unwrap();
temp_file.rewind().unwrap();
// Test read_volatile for File works
let mut memory = vec![0u8; 5];
assert_eq!(
temp_file
.read_volatile(&mut VolatileSlice::from(&mut memory[..4]))
.unwrap(),
source.len().min(4)
);
assert_eq!(&memory, &expected_output);
temp_file.rewind().unwrap();
// Test read_exact_volatile for File works
let mut memory = vec![0u8; 5];
let read_exact_result =
temp_file.read_exact_volatile(&mut VolatileSlice::from(&mut memory[..4]));
if source.len() < 4 {
read_exact_result.unwrap_err();
} else {
read_exact_result.unwrap();
}
assert_eq!(&memory, &expected_output);
}
#[test]
fn test_read_volatile() {
let test_cases = [
(vec![1u8, 2], [1u8, 2, 0, 0, 0]),
(vec![1, 2, 3, 4], [1, 2, 3, 4, 0]),
// ensure we don't have a buffer overrun
(vec![5, 6, 7, 8, 9], [5, 6, 7, 8, 0]),
];
for (input, output) in test_cases {
read_4_bytes_to_5_byte_memory(input.clone(), output);
read_4_bytes_from_file(input, output);
}
}
// ---- Test WriteVolatile for &mut [u8] ----
fn write_4_bytes_to_5_byte_vec(mut source: Vec<u8>, expected_result: [u8; 5]) {
let mut memory = vec![0u8; 5];
// Test write_volatile for &mut [u8] works
assert_eq!(
(&mut memory[..4])
.write_volatile(&VolatileSlice::from(source.as_mut_slice()))
.unwrap(),
source.len().min(4)
);
assert_eq!(&memory, &expected_result);
// Test write_all_volatile for &mut [u8] works
let mut memory = vec![0u8; 5];
let result =
(&mut memory[..4]).write_all_volatile(&VolatileSlice::from(source.as_mut_slice()));
if source.len() > 4 {
match result.unwrap_err() {
VolatileMemoryError::IOError(ioe) => {
assert_eq!(ioe.kind(), ErrorKind::WriteZero)
}
err => panic!("{:?}", err),
}
// This quirky behavior of writing to the slice even in the case of failure is also
// exhibited by the stdlib
assert_eq!(&memory, &expected_result);
} else {
result.unwrap();
assert_eq!(&memory, &expected_result);
}
}
// ---- Test ẂriteVolatile for File works ----
fn write_5_bytes_to_file(mut source: Vec<u8>) {
// Test write_volatile for File works
let mut temp_file = TempFile::new().unwrap().into_file();
temp_file
.write_volatile(&VolatileSlice::from(source.as_mut_slice()))
.unwrap();
temp_file.rewind().unwrap();
let mut written = vec![0u8; source.len()];
temp_file.read_exact(written.as_mut_slice()).unwrap();
assert_eq!(source, written);
// check no excess bytes were written to the file
assert_eq!(temp_file.read(&mut [0u8]).unwrap(), 0);
// Test write_all_volatile for File works
let mut temp_file = TempFile::new().unwrap().into_file();
temp_file
.write_all_volatile(&VolatileSlice::from(source.as_mut_slice()))
.unwrap();
temp_file.rewind().unwrap();
let mut written = vec![0u8; source.len()];
temp_file.read_exact(written.as_mut_slice()).unwrap();
assert_eq!(source, written);
// check no excess bytes were written to the file
assert_eq!(temp_file.read(&mut [0u8]).unwrap(), 0);
}
#[test]
fn test_write_volatile() {
let test_cases = [
(vec![1u8, 2], [1u8, 2, 0, 0, 0]),
(vec![1, 2, 3, 4], [1, 2, 3, 4, 0]),
// ensure we don't have a buffer overrun
(vec![5, 6, 7, 8, 9], [5, 6, 7, 8, 0]),
];
for (input, output) in test_cases {
write_4_bytes_to_5_byte_vec(input.clone(), output);
write_5_bytes_to_file(input);
}
}
#[test]
fn test_read_volatile_for_cursor() {
let read_buffer = [1, 2, 3, 4, 5, 6, 7];
let mut output = vec![0u8; 5];
let mut cursor = Cursor::new(read_buffer);
// Read 4 bytes from cursor to volatile slice (amount read limited by volatile slice length)
assert_eq!(
cursor
.read_volatile(&mut VolatileSlice::from(&mut output[..4]))
.unwrap(),
4
);
assert_eq!(output, vec![1, 2, 3, 4, 0]);
// Read next 3 bytes from cursor to volatile slice (amount read limited by length of remaining data in cursor)
assert_eq!(
cursor
.read_volatile(&mut VolatileSlice::from(&mut output[..4]))
.unwrap(),
3
);
assert_eq!(output, vec![5, 6, 7, 4, 0]);
cursor.set_position(0);
// Same as first test above, but with read_exact
cursor
.read_exact_volatile(&mut VolatileSlice::from(&mut output[..4]))
.unwrap();
assert_eq!(output, vec![1, 2, 3, 4, 0]);
// Same as above, but with read_exact. Should fail now, because we cannot fill a 4 byte buffer
// with whats remaining in the cursor (3 bytes). Output should remain unchanged.
assert!(cursor
.read_exact_volatile(&mut VolatileSlice::from(&mut output[..4]))
.is_err());
assert_eq!(output, vec![1, 2, 3, 4, 0]);
}
#[test]
fn test_write_volatile_for_cursor() {
let mut write_buffer = vec![0u8; 7];
let mut input = [1, 2, 3, 4];
let mut cursor = Cursor::new(write_buffer.as_mut_slice());
// Write 4 bytes from volatile slice to cursor (amount written limited by volatile slice length)
assert_eq!(
cursor
.write_volatile(&VolatileSlice::from(input.as_mut_slice()))
.unwrap(),
4
);
assert_eq!(cursor.get_ref(), &[1, 2, 3, 4, 0, 0, 0]);
// Write 3 bytes from volatile slice to cursor (amount written limited by remaining space in cursor)
assert_eq!(
cursor
.write_volatile(&VolatileSlice::from(input.as_mut_slice()))
.unwrap(),
3
);
assert_eq!(cursor.get_ref(), &[1, 2, 3, 4, 1, 2, 3]);
}
#[test]
fn test_write_volatile_for_vec() {
let mut write_buffer = Vec::new();
let mut input = [1, 2, 3, 4];
assert_eq!(
write_buffer
.write_volatile(&VolatileSlice::from(input.as_mut_slice()))
.unwrap(),
4
);
assert_eq!(&write_buffer, &input);
}
}