1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//! Module containing versions of the standard library's [`Read`](std::io::Read) and
//! [`Write`](std::io::Write) traits compatible with volatile memory accesses.

use crate::bitmap::BitmapSlice;
use crate::volatile_memory::copy_slice_impl::{copy_from_volatile_slice, copy_to_volatile_slice};
use crate::{VolatileMemoryError, VolatileSlice};
use std::io::{Cursor, ErrorKind, Stdout};
use std::os::fd::AsRawFd;

/// A version of the standard library's [`Read`](std::io::Read) trait that operates on volatile
/// memory instead of slices
///
/// This trait is needed as rust slices (`&[u8]` and `&mut [u8]`) cannot be used when operating on
/// guest memory [1].
///
/// [1]: https://github.com/rust-vmm/vm-memory/pull/217
pub trait ReadVolatile {
    /// Tries to read some bytes into the given [`VolatileSlice`] buffer, returning how many bytes
    /// were read.
    ///
    /// The behavior of implementations should be identical to [`Read::read`](std::io::Read::read)
    fn read_volatile<B: BitmapSlice>(
        &mut self,
        buf: &mut VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError>;

    /// Tries to fill the given [`VolatileSlice`] buffer by reading from `self` returning an error
    /// if insufficient bytes could be read.
    ///
    /// The default implementation is identical to that of [`Read::read_exact`](std::io::Read::read_exact)
    fn read_exact_volatile<B: BitmapSlice>(
        &mut self,
        buf: &mut VolatileSlice<B>,
    ) -> Result<(), VolatileMemoryError> {
        // Implementation based on https://github.com/rust-lang/rust/blob/7e7483d26e3cec7a44ef00cf7ae6c9c8c918bec6/library/std/src/io/mod.rs#L465

        let mut partial_buf = buf.offset(0)?;

        while !partial_buf.is_empty() {
            match self.read_volatile(&mut partial_buf) {
                Err(VolatileMemoryError::IOError(err)) if err.kind() == ErrorKind::Interrupted => {
                    continue
                }
                Ok(0) => {
                    return Err(VolatileMemoryError::IOError(std::io::Error::new(
                        ErrorKind::UnexpectedEof,
                        "failed to fill whole buffer",
                    )))
                }
                Ok(bytes_read) => partial_buf = partial_buf.offset(bytes_read)?,
                Err(err) => return Err(err),
            }
        }

        Ok(())
    }
}

/// A version of the standard library's [`Write`](std::io::Write) trait that operates on volatile
/// memory instead of slices.
///
/// This trait is needed as rust slices (`&[u8]` and `&mut [u8]`) cannot be used when operating on
/// guest memory [1].
///
/// [1]: https://github.com/rust-vmm/vm-memory/pull/217
pub trait WriteVolatile {
    /// Tries to write some bytes from the given [`VolatileSlice`] buffer, returning how many bytes
    /// were written.
    ///
    /// The behavior of implementations should be identical to [`Write::write`](std::io::Write::write)
    fn write_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError>;

    /// Tries write the entire content of the given [`VolatileSlice`] buffer to `self` returning an
    /// error if not all bytes could be written.
    ///
    /// The default implementation is identical to that of [`Write::write_all`](std::io::Write::write_all)
    fn write_all_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<(), VolatileMemoryError> {
        // Based on https://github.com/rust-lang/rust/blob/7e7483d26e3cec7a44ef00cf7ae6c9c8c918bec6/library/std/src/io/mod.rs#L1570

        let mut partial_buf = buf.offset(0)?;

        while !partial_buf.is_empty() {
            match self.write_volatile(&partial_buf) {
                Err(VolatileMemoryError::IOError(err)) if err.kind() == ErrorKind::Interrupted => {
                    continue
                }
                Ok(0) => {
                    return Err(VolatileMemoryError::IOError(std::io::Error::new(
                        ErrorKind::WriteZero,
                        "failed to write whole buffer",
                    )))
                }
                Ok(bytes_written) => partial_buf = partial_buf.offset(bytes_written)?,
                Err(err) => return Err(err),
            }
        }

        Ok(())
    }
}

// We explicitly implement our traits for [`std::fs::File`] and [`std::os::unix::net::UnixStream`]
// instead of providing blanket implementation for [`AsRawFd`] due to trait coherence limitations: A
// blanket implementation would prevent us from providing implementations for `&mut [u8]` below, as
// "an upstream crate could implement AsRawFd for &mut [u8]`.

macro_rules! impl_read_write_volatile_for_raw_fd {
    ($raw_fd_ty:ty) => {
        impl ReadVolatile for $raw_fd_ty {
            fn read_volatile<B: BitmapSlice>(
                &mut self,
                buf: &mut VolatileSlice<B>,
            ) -> Result<usize, VolatileMemoryError> {
                read_volatile_raw_fd(self, buf)
            }
        }

        impl WriteVolatile for $raw_fd_ty {
            fn write_volatile<B: BitmapSlice>(
                &mut self,
                buf: &VolatileSlice<B>,
            ) -> Result<usize, VolatileMemoryError> {
                write_volatile_raw_fd(self, buf)
            }
        }
    };
}

impl WriteVolatile for Stdout {
    fn write_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError> {
        write_volatile_raw_fd(self, buf)
    }
}

impl_read_write_volatile_for_raw_fd!(std::fs::File);
impl_read_write_volatile_for_raw_fd!(std::os::unix::net::UnixStream);
impl_read_write_volatile_for_raw_fd!(std::os::fd::OwnedFd);
impl_read_write_volatile_for_raw_fd!(std::os::fd::BorrowedFd<'_>);

/// Tries to do a single `read` syscall on the provided file descriptor, storing the data raed in
/// the given [`VolatileSlice`].
///
/// Returns the numbers of bytes read.
fn read_volatile_raw_fd<Fd: AsRawFd>(
    raw_fd: &mut Fd,
    buf: &mut VolatileSlice<impl BitmapSlice>,
) -> Result<usize, VolatileMemoryError> {
    let fd = raw_fd.as_raw_fd();
    let guard = buf.ptr_guard_mut();

    let dst = guard.as_ptr().cast::<libc::c_void>();

    // SAFETY: We got a valid file descriptor from `AsRawFd`. The memory pointed to by `dst` is
    // valid for writes of length `buf.len() by the invariants upheld by the constructor
    // of `VolatileSlice`.
    let bytes_read = unsafe { libc::read(fd, dst, buf.len()) };

    if bytes_read < 0 {
        // We don't know if a partial read might have happened, so mark everything as dirty
        buf.bitmap().mark_dirty(0, buf.len());

        Err(VolatileMemoryError::IOError(std::io::Error::last_os_error()))
    } else {
        let bytes_read = bytes_read.try_into().unwrap();
        buf.bitmap().mark_dirty(0, bytes_read);
        Ok(bytes_read)
    }
}

/// Tries to do a single `write` syscall on the provided file descriptor, attempting to write the
/// data stored in the given [`VolatileSlice`].
///
/// Returns the numbers of bytes written.
fn write_volatile_raw_fd<Fd: AsRawFd>(
    raw_fd: &mut Fd,
    buf: &VolatileSlice<impl BitmapSlice>,
) -> Result<usize, VolatileMemoryError> {
    let fd = raw_fd.as_raw_fd();
    let guard = buf.ptr_guard();

    let src = guard.as_ptr().cast::<libc::c_void>();

    // SAFETY: We got a valid file descriptor from `AsRawFd`. The memory pointed to by `src` is
    // valid for reads of length `buf.len() by the invariants upheld by the constructor
    // of `VolatileSlice`.
    let bytes_written = unsafe { libc::write(fd, src, buf.len()) };

    if bytes_written < 0 {
        Err(VolatileMemoryError::IOError(std::io::Error::last_os_error()))
    } else {
        Ok(bytes_written.try_into().unwrap())
    }
}

impl WriteVolatile for &mut [u8] {
    fn write_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError> {
        let total = buf.len().min(self.len());
        let src = buf.subslice(0, total)?;

        // SAFETY:
        // We check above that `src` is contiguously allocated memory of length `total <= self.len())`.
        // Furthermore, both src and dst of the call to
        // copy_from_volatile_slice are valid for reads and writes respectively of length `total`
        // since total is the minimum of lengths of the memory areas pointed to. The areas do not
        // overlap, since `dst` is inside guest memory, and buf is a slice (no slices to guest
        // memory are possible without violating rust's aliasing rules).
        let written = unsafe { copy_from_volatile_slice(self.as_mut_ptr(), &src, total) };

        // Advance the slice, just like the stdlib: https://doc.rust-lang.org/src/std/io/impls.rs.html#335
        *self = std::mem::take(self).split_at_mut(written).1;

        Ok(written)
    }

    fn write_all_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<(), VolatileMemoryError> {
        // Based on https://github.com/rust-lang/rust/blob/f7b831ac8a897273f78b9f47165cf8e54066ce4b/library/std/src/io/impls.rs#L376-L382
        if self.write_volatile(buf)? == buf.len() {
            Ok(())
        } else {
            Err(VolatileMemoryError::IOError(std::io::Error::new(
                ErrorKind::WriteZero,
                "failed to write whole buffer",
            )))
        }
    }
}

impl ReadVolatile for &[u8] {
    fn read_volatile<B: BitmapSlice>(
        &mut self,
        buf: &mut VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError> {
        let total = buf.len().min(self.len());
        let dst = buf.subslice(0, total)?;

        // SAFETY:
        // We check above that `dst` is contiguously allocated memory of length `total <= self.len())`.
        // Furthermore, both src and dst of the call to copy_to_volatile_slice are valid for reads
        // and writes respectively of length `total` since total is the minimum of lengths of the
        // memory areas pointed to. The areas do not overlap, since `dst` is inside guest memory,
        // and buf is a slice (no slices to guest memory are possible without violating rust's aliasing rules).
        let read = unsafe { copy_to_volatile_slice(&dst, self.as_ptr(), total) };

        // Advance the slice, just like the stdlib: https://doc.rust-lang.org/src/std/io/impls.rs.html#232-310
        *self = self.split_at(read).1;

        Ok(read)
    }

    fn read_exact_volatile<B: BitmapSlice>(
        &mut self,
        buf: &mut VolatileSlice<B>,
    ) -> Result<(), VolatileMemoryError> {
        // Based on https://github.com/rust-lang/rust/blob/f7b831ac8a897273f78b9f47165cf8e54066ce4b/library/std/src/io/impls.rs#L282-L302
        if buf.len() > self.len() {
            return Err(VolatileMemoryError::IOError(std::io::Error::new(
                ErrorKind::UnexpectedEof,
                "failed to fill whole buffer",
            )));
        }

        self.read_volatile(buf).map(|_| ())
    }
}

// WriteVolatile implementation for Vec<u8> is based upon the Write impl for Vec, which
// defers to Vec::append_elements, after which the below functionality is modelled.
impl WriteVolatile for Vec<u8> {
    fn write_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError> {
        let count = buf.len();
        self.reserve(count);
        let len = self.len();

        // SAFETY: Calling Vec::reserve() above guarantees the the backing storage of the Vec has
        // length at least `len + count`. This means that self.as_mut_ptr().add(len) remains within
        // the same allocated object, the offset does not exceed isize (as otherwise reserve would
        // have panicked), and does not rely on address space wrapping around.
        // In particular, the entire `count` bytes after `self.as_mut_ptr().add(count)` is
        // contiguously allocated and valid for writes.
        // Lastly, `copy_to_volatile_slice` correctly initialized `copied_len` additional bytes
        // in the Vec's backing storage, and we assert this to be equal to `count`. Additionally,
        // `len + count` is at most the reserved capacity of the vector. Thus the call to `set_len`
        // is safe.
        unsafe {
            let copied_len = copy_from_volatile_slice(self.as_mut_ptr().add(len), buf, count);

            assert_eq!(copied_len, count);
            self.set_len(len + count);
        }
        Ok(count)
    }
}

// ReadVolatile and WriteVolatile implementations for Cursor<T> is modelled after the standard
// library's implementation (modulo having to inline `Cursor::remaining_slice`, as that's nightly only)
impl<T> ReadVolatile for Cursor<T>
where
    T: AsRef<[u8]>,
{
    fn read_volatile<B: BitmapSlice>(
        &mut self,
        buf: &mut VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError> {
        let inner = self.get_ref().as_ref();
        let len = self.position().min(inner.len() as u64);
        let n = ReadVolatile::read_volatile(&mut &inner[(len as usize)..], buf)?;
        self.set_position(self.position() + n as u64);
        Ok(n)
    }

    fn read_exact_volatile<B: BitmapSlice>(
        &mut self,
        buf: &mut VolatileSlice<B>,
    ) -> Result<(), VolatileMemoryError> {
        let inner = self.get_ref().as_ref();
        let n = buf.len();
        let len = self.position().min(inner.len() as u64);
        ReadVolatile::read_exact_volatile(&mut &inner[(len as usize)..], buf)?;
        self.set_position(self.position() + n as u64);
        Ok(())
    }
}

impl WriteVolatile for Cursor<&mut [u8]> {
    fn write_volatile<B: BitmapSlice>(
        &mut self,
        buf: &VolatileSlice<B>,
    ) -> Result<usize, VolatileMemoryError> {
        let pos = self.position().min(self.get_ref().len() as u64);
        let n = WriteVolatile::write_volatile(&mut &mut self.get_mut()[(pos as usize)..], buf)?;
        self.set_position(self.position() + n as u64);
        Ok(n)
    }

    // no write_all provided in standard library, since our default for write_all is based on the
    // standard library's write_all, omitting it here as well will correctly mimic stdlib behavior.
}

#[cfg(test)]
mod tests {
    use crate::io::{ReadVolatile, WriteVolatile};
    use crate::{VolatileMemoryError, VolatileSlice};
    use std::io::{Cursor, ErrorKind, Read, Seek, Write};
    use vmm_sys_util::tempfile::TempFile;

    // ---- Test ReadVolatile for &[u8] ----
    fn read_4_bytes_to_5_byte_memory(source: Vec<u8>, expected_output: [u8; 5]) {
        // Test read_volatile for &[u8] works
        let mut memory = vec![0u8; 5];

        assert_eq!(
            (&source[..])
                .read_volatile(&mut VolatileSlice::from(&mut memory[..4]))
                .unwrap(),
            source.len().min(4)
        );
        assert_eq!(&memory, &expected_output);

        // Test read_exact_volatile for &[u8] works
        let mut memory = vec![0u8; 5];
        let result = (&source[..]).read_exact_volatile(&mut VolatileSlice::from(&mut memory[..4]));

        // read_exact fails if there are not enough bytes in input to completely fill
        // memory[..4]
        if source.len() < 4 {
            match result.unwrap_err() {
                VolatileMemoryError::IOError(ioe) => {
                    assert_eq!(ioe.kind(), ErrorKind::UnexpectedEof)
                }
                err => panic!("{:?}", err),
            }
            assert_eq!(memory, vec![0u8; 5]);
        } else {
            result.unwrap();
            assert_eq!(&memory, &expected_output);
        }
    }

    // ---- Test ReadVolatile for File ----
    fn read_4_bytes_from_file(source: Vec<u8>, expected_output: [u8; 5]) {
        let mut temp_file = TempFile::new().unwrap().into_file();
        temp_file.write_all(source.as_ref()).unwrap();
        temp_file.rewind().unwrap();

        // Test read_volatile for File works
        let mut memory = vec![0u8; 5];

        assert_eq!(
            temp_file
                .read_volatile(&mut VolatileSlice::from(&mut memory[..4]))
                .unwrap(),
            source.len().min(4)
        );
        assert_eq!(&memory, &expected_output);

        temp_file.rewind().unwrap();

        // Test read_exact_volatile for File works
        let mut memory = vec![0u8; 5];

        let read_exact_result =
            temp_file.read_exact_volatile(&mut VolatileSlice::from(&mut memory[..4]));

        if source.len() < 4 {
            read_exact_result.unwrap_err();
        } else {
            read_exact_result.unwrap();
        }
        assert_eq!(&memory, &expected_output);
    }

    #[test]
    fn test_read_volatile() {
        let test_cases = [
            (vec![1u8, 2], [1u8, 2, 0, 0, 0]),
            (vec![1, 2, 3, 4], [1, 2, 3, 4, 0]),
            // ensure we don't have a buffer overrun
            (vec![5, 6, 7, 8, 9], [5, 6, 7, 8, 0]),
        ];

        for (input, output) in test_cases {
            read_4_bytes_to_5_byte_memory(input.clone(), output);
            read_4_bytes_from_file(input, output);
        }
    }

    // ---- Test WriteVolatile for &mut [u8] ----
    fn write_4_bytes_to_5_byte_vec(mut source: Vec<u8>, expected_result: [u8; 5]) {
        let mut memory = vec![0u8; 5];

        // Test write_volatile for &mut [u8] works
        assert_eq!(
            (&mut memory[..4])
                .write_volatile(&VolatileSlice::from(source.as_mut_slice()))
                .unwrap(),
            source.len().min(4)
        );
        assert_eq!(&memory, &expected_result);

        // Test write_all_volatile for &mut [u8] works
        let mut memory = vec![0u8; 5];

        let result =
            (&mut memory[..4]).write_all_volatile(&VolatileSlice::from(source.as_mut_slice()));

        if source.len() > 4 {
            match result.unwrap_err() {
                VolatileMemoryError::IOError(ioe) => {
                    assert_eq!(ioe.kind(), ErrorKind::WriteZero)
                }
                err => panic!("{:?}", err),
            }
            // This quirky behavior of writing to the slice even in the case of failure is also
            // exhibited by the stdlib
            assert_eq!(&memory, &expected_result);
        } else {
            result.unwrap();
            assert_eq!(&memory, &expected_result);
        }
    }

    // ---- Test ẂriteVolatile for File works ----
    fn write_5_bytes_to_file(mut source: Vec<u8>) {
        // Test write_volatile for File works
        let mut temp_file = TempFile::new().unwrap().into_file();

        temp_file
            .write_volatile(&VolatileSlice::from(source.as_mut_slice()))
            .unwrap();
        temp_file.rewind().unwrap();

        let mut written = vec![0u8; source.len()];
        temp_file.read_exact(written.as_mut_slice()).unwrap();

        assert_eq!(source, written);
        // check no excess bytes were written to the file
        assert_eq!(temp_file.read(&mut [0u8]).unwrap(), 0);

        // Test write_all_volatile for File works
        let mut temp_file = TempFile::new().unwrap().into_file();

        temp_file
            .write_all_volatile(&VolatileSlice::from(source.as_mut_slice()))
            .unwrap();
        temp_file.rewind().unwrap();

        let mut written = vec![0u8; source.len()];
        temp_file.read_exact(written.as_mut_slice()).unwrap();

        assert_eq!(source, written);
        // check no excess bytes were written to the file
        assert_eq!(temp_file.read(&mut [0u8]).unwrap(), 0);
    }

    #[test]
    fn test_write_volatile() {
        let test_cases = [
            (vec![1u8, 2], [1u8, 2, 0, 0, 0]),
            (vec![1, 2, 3, 4], [1, 2, 3, 4, 0]),
            // ensure we don't have a buffer overrun
            (vec![5, 6, 7, 8, 9], [5, 6, 7, 8, 0]),
        ];

        for (input, output) in test_cases {
            write_4_bytes_to_5_byte_vec(input.clone(), output);
            write_5_bytes_to_file(input);
        }
    }

    #[test]
    fn test_read_volatile_for_cursor() {
        let read_buffer = [1, 2, 3, 4, 5, 6, 7];
        let mut output = vec![0u8; 5];

        let mut cursor = Cursor::new(read_buffer);

        // Read 4 bytes from cursor to volatile slice (amount read limited by volatile slice length)
        assert_eq!(
            cursor
                .read_volatile(&mut VolatileSlice::from(&mut output[..4]))
                .unwrap(),
            4
        );
        assert_eq!(output, vec![1, 2, 3, 4, 0]);

        // Read next 3 bytes from cursor to volatile slice (amount read limited by length of remaining data in cursor)
        assert_eq!(
            cursor
                .read_volatile(&mut VolatileSlice::from(&mut output[..4]))
                .unwrap(),
            3
        );
        assert_eq!(output, vec![5, 6, 7, 4, 0]);

        cursor.set_position(0);
        // Same as first test above, but with read_exact
        cursor
            .read_exact_volatile(&mut VolatileSlice::from(&mut output[..4]))
            .unwrap();
        assert_eq!(output, vec![1, 2, 3, 4, 0]);

        // Same as above, but with read_exact. Should fail now, because we cannot fill a 4 byte buffer
        // with whats remaining in the cursor (3 bytes). Output should remain unchanged.
        assert!(cursor
            .read_exact_volatile(&mut VolatileSlice::from(&mut output[..4]))
            .is_err());
        assert_eq!(output, vec![1, 2, 3, 4, 0]);
    }

    #[test]
    fn test_write_volatile_for_cursor() {
        let mut write_buffer = vec![0u8; 7];
        let mut input = [1, 2, 3, 4];

        let mut cursor = Cursor::new(write_buffer.as_mut_slice());

        // Write 4 bytes from volatile slice to cursor (amount written limited by volatile slice length)
        assert_eq!(
            cursor
                .write_volatile(&VolatileSlice::from(input.as_mut_slice()))
                .unwrap(),
            4
        );
        assert_eq!(cursor.get_ref(), &[1, 2, 3, 4, 0, 0, 0]);

        // Write 3 bytes from volatile slice to cursor (amount written limited by remaining space in cursor)
        assert_eq!(
            cursor
                .write_volatile(&VolatileSlice::from(input.as_mut_slice()))
                .unwrap(),
            3
        );
        assert_eq!(cursor.get_ref(), &[1, 2, 3, 4, 1, 2, 3]);
    }

    #[test]
    fn test_write_volatile_for_vec() {
        let mut write_buffer = Vec::new();
        let mut input = [1, 2, 3, 4];

        assert_eq!(
            write_buffer
                .write_volatile(&VolatileSlice::from(input.as_mut_slice()))
                .unwrap(),
            4
        );

        assert_eq!(&write_buffer, &input);
    }
}