lightning_signer/util/
crypto_utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
use crate::prelude::*;
use bitcoin::hashes::hash160::Hash as BitcoinHash160;
use bitcoin::hashes::sha256::Hash as BitcoinSha256;
use bitcoin::hashes::{Hash, HashEngine, Hmac, HmacEngine};
use bitcoin::secp256k1::constants::SCHNORR_SIGNATURE_SIZE;
use bitcoin::secp256k1::{
    self, ecdsa::Signature, schnorr, Message, PublicKey, Secp256k1, SecretKey,
};
use bitcoin::util::address::{Payload, WitnessVersion};
use bitcoin::util::taproot::{TapSighashHash, TapTweakHash};
use bitcoin::{EcdsaSighashType, Script, XOnlyPublicKey};
use bitcoin::{PrivateKey, Sighash};

fn hkdf_extract_expand(salt: &[u8], secret: &[u8], info: &[u8], output: &mut [u8]) {
    let mut hmac = HmacEngine::<BitcoinSha256>::new(salt);
    hmac.input(secret);
    let prk = Hmac::from_engine(hmac).into_inner();

    let mut t = [0; 32];
    let mut n: u8 = 0;

    for chunk in output.chunks_mut(32) {
        let mut hmac = HmacEngine::<BitcoinSha256>::new(&prk[..]);
        n = n.checked_add(1).expect("HKDF size limit exceeded.");
        if n != 1 {
            hmac.input(&t);
        }
        hmac.input(&info);
        hmac.input(&[n]);
        t = Hmac::from_engine(hmac).into_inner();
        chunk.copy_from_slice(&t);
    }
}

/// derive a secret from another secret using HKDF-SHA256
pub fn hkdf_sha256(secret: &[u8], info: &[u8], salt: &[u8]) -> [u8; 32] {
    let mut result = [0u8; 32];
    hkdf_extract_expand(salt, secret, info, &mut result);
    result
}

pub(crate) fn hkdf_sha256_keys(secret: &[u8], info: &[u8], salt: &[u8]) -> [u8; 32 * 6] {
    let mut result = [0u8; 32 * 6];
    hkdf_extract_expand(salt, secret, info, &mut result);
    result
}

pub(crate) fn derive_public_key<T: secp256k1::Signing>(
    secp_ctx: &Secp256k1<T>,
    per_commitment_point: &PublicKey,
    base_point: &PublicKey,
) -> Result<PublicKey, secp256k1::Error> {
    let mut sha = BitcoinSha256::engine();
    sha.input(&per_commitment_point.serialize());
    sha.input(&base_point.serialize());
    let res = BitcoinSha256::from_engine(sha).into_inner();

    let hashkey = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&res)?);
    base_point.combine(&hashkey)
}

// only used in test_utils.rs, so warns when that file is not included
#[allow(unused)]
pub(crate) fn payload_for_p2wpkh(key: &PublicKey) -> Payload {
    let mut hash_engine = BitcoinHash160::engine();
    hash_engine.input(&key.serialize());
    Payload::WitnessProgram {
        version: WitnessVersion::V0,
        program: BitcoinHash160::from_engine(hash_engine)[..].to_vec(),
    }
}

pub(crate) fn payload_for_p2wsh(script: &Script) -> Payload {
    let mut hash_engine = BitcoinSha256::engine();
    hash_engine.input(&script[..]);
    Payload::WitnessProgram {
        version: WitnessVersion::V0,
        program: BitcoinSha256::from_engine(hash_engine)[..].to_vec(),
    }
}

/// Convert a [Signature] to Bitcoin signature bytes, with SIGHASH_ALL
pub fn signature_to_bitcoin_vec(sig: Signature) -> Vec<u8> {
    let mut sigvec = sig.serialize_der().to_vec();
    sigvec.push(EcdsaSighashType::All as u8);
    sigvec
}

/// Convert a [Signature] to Bitcoin signature bytes, with SIGHASH_ALL
pub fn schnorr_signature_to_bitcoin_vec(sig: schnorr::Signature) -> Vec<u8> {
    // taproot sighash type defaults to ALL
    let mut sigvec = Vec::with_capacity(SCHNORR_SIGNATURE_SIZE);
    sigvec.extend_from_slice(&sig[..]);
    sigvec
}

/// Convert a Bitcoin signature bytes, with the specified EcdsaSighashType, to [Signature]
pub fn bitcoin_vec_to_signature(
    sigvec: &[u8],
    sighash_type: EcdsaSighashType,
) -> Result<Signature, secp256k1::Error> {
    let len = sigvec.len();
    if len == 0 {
        return Err(secp256k1::Error::InvalidSignature);
    }
    let mut sv = sigvec.to_vec();
    let mode = sv.pop().ok_or_else(|| secp256k1::Error::InvalidSignature)?;
    if mode != sighash_type as u8 {
        return Err(secp256k1::Error::InvalidSignature);
    }
    Ok(Signature::from_der(&sv[..])?)
}

/// Use the provided seed, or generate a random one
pub fn maybe_generate_seed(seed_opt: Option<[u8; 32]>) -> [u8; 32] {
    seed_opt.unwrap_or_else(generate_seed)
}

/// Generate a seed
pub fn generate_seed() -> [u8; 32] {
    #[cfg(feature = "std")]
    {
        use secp256k1::rand::RngCore;
        let mut seed = [0; 32];
        let mut rng = secp256k1::rand::rngs::OsRng;
        rng.fill_bytes(&mut seed);
        seed
    }
    #[cfg(not(feature = "std"))]
    todo!("no RNG available in no_std environments yet");
}

/// Hash the serialized heartbeat message for signing
pub fn sighash_from_heartbeat(ser_heartbeat: &[u8]) -> Message {
    let mut sha = BitcoinSha256::engine();
    sha.input("vls".as_bytes());
    sha.input("heartbeat".as_bytes());
    sha.input(ser_heartbeat);
    let hash = BitcoinSha256::from_engine(sha);
    Message::from_slice(&hash).unwrap()
}

pub(crate) fn ecdsa_sign(
    secp_ctx: &Secp256k1<secp256k1::All>,
    privkey: &PrivateKey,
    sighash: &Sighash,
) -> Signature {
    let message = Message::from_slice(&sighash).unwrap();
    secp_ctx.sign_ecdsa(&message, &privkey.inner)
}

pub(crate) fn taproot_sign(
    secp_ctx: &Secp256k1<secp256k1::All>,
    privkey: &PrivateKey,
    sighash: TapSighashHash,
    aux_rand: &[u8; 32],
) -> schnorr::Signature {
    let message = Message::from(sighash);
    let keypair = secp256k1::KeyPair::from_secret_key(secp_ctx, &privkey.inner);
    let (internal_key, _parity) = XOnlyPublicKey::from_keypair(&keypair);
    let tweak = TapTweakHash::from_key_and_tweak(internal_key, None);
    let tweaked_keypair = keypair.add_xonly_tweak(secp_ctx, &tweak.to_scalar()).unwrap();

    secp_ctx.sign_schnorr_with_aux_rand(&message, &tweaked_keypair, aux_rand)
}

#[cfg(test)]
mod tests {
    use super::*;
    use bitcoin::hashes::hex::{FromHex, ToHex};

    #[test]
    fn test_hkdf() {
        let secret = [1u8];
        let info = [2u8];
        let salt = [3u8];
        let mut output = [0u8; 32 * 6];
        hkdf_extract_expand(&salt, &secret, &info, &mut output);
        assert_eq!(
            output.to_vec().to_hex(),
            "13a04658302cc5173a8077f2f296662a7a3ddb2359be92770b13e0b9e63a23d0efbbb13e74af4687137801e1628d1d1876d251b31d1321383568a9387da7c0baa7dee83ba374bba3774ef01140e4c4293791a512e536764bf4405aea511be32d5fd71a0b7a7ef3638312e476eb323fbac5f3d549ccf0fe0eabb38fe7bc16ad01db2288e57de45eabecd561ede4dc89164099ed7f0b0db5250e2b377e2aa84f520838612dccbde870f7b06a1e03f3cd79d30da717c55e15442a0b4dd02aafcd86"
        );
        let mut output = [0u8; 32];
        hkdf_extract_expand(&salt, &secret, &info, &mut output);
        assert_eq!(
            output.to_vec().to_hex(),
            "13a04658302cc5173a8077f2f296662a7a3ddb2359be92770b13e0b9e63a23d0"
        );
    }

    #[test]
    fn test_schnorr_signature_to_bitcoin_vec() {
        let test_signature_bytes: Vec<u8> = vec![0; 64];

        let test_signature = schnorr::Signature::from_slice(&test_signature_bytes).unwrap();

        let result = schnorr_signature_to_bitcoin_vec(test_signature);

        assert_eq!(test_signature_bytes, result);
    }

    #[test]
    fn test_bitcoin_vec_to_signature() {
        let sighash_type = EcdsaSighashType::All;
        let sigvec: Vec<u8> = vec![];

        let result = bitcoin_vec_to_signature(&sigvec, sighash_type);

        assert_eq!(result, Err(secp256k1::Error::InvalidSignature));

        let mut sigvec = Vec::from_hex(
            "304402202e1f64d831e89e2b4a0dc8565cb2d0a4d6061a89f9b48f2c26d5ac0b3b9a0bb102200c8d396f8b2e9c6c623bebc015c47f1f41e8824fabe7cb028f174a0e5df3c0a0"
        ).unwrap();

        sigvec.push(1 as u8);

        let result = bitcoin_vec_to_signature(&sigvec, sighash_type).unwrap();

        sigvec.pop();

        let parsed_signature = Signature::from_der(&sigvec).expect("valid DER signature");

        assert_eq!(result, parsed_signature);
    }

    #[test]
    fn test_maybe_generate_seed() {
        let known_seed: [u8; 32] = [1; 32];

        let result = maybe_generate_seed(Some(known_seed));

        assert_eq!(result, known_seed);

        let result = maybe_generate_seed(None);

        assert_eq!(result.len(), 32);
    }

    #[test]
    fn test_taproot_sign() {
        let secp = Secp256k1::new();

        let privkey_bytes =
            Vec::from_hex("d8d3a3140ba89f14144b0dfe40e04220e02ed68736a5773e050a3c4116b1e31c")
                .unwrap();
        let secret_key =
            SecretKey::from_slice(&privkey_bytes).expect("32 bytes, within curve order");

        let privkey = PrivateKey::new(secret_key, bitcoin::Network::Bitcoin);

        let sighash = TapSighashHash::hash(&[0]);

        let aux_rand: [u8; 32] = [0u8; 32];

        let signature = taproot_sign(&secp, &privkey, sighash, &aux_rand);

        let expected_signature_hex =
            "14262eb13409cd8928536ab60f431b95193d2d9c7cc476e9f43e8b8f98a8d5a8c38d3edc7bf43c389a12c9e5fad9485ee5d59df2d35f46c3f77ca07197ee1db2";

        assert_eq!(expected_signature_hex, signature.to_hex());
    }
}