vkfetch_rs/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
pub mod ascii_art;
pub mod device;
pub mod vendor;

use ash::{self, vk, Entry, Instance};
use device::Device;
use std::error::Error;
use vendor::Vendor;
use vt::enable_virtual_terminal_processing;

const BOLD: &str = "\x1B[1m";
const RESET: &str = "\x1B[0m";
const ALIGNMENT: &str = "    ";
const EMPTY: &str = "";

/// Fetches and prints information for a given physical device.
pub fn fetch_device(
    instance: &Instance,
    device_handle: vk::PhysicalDevice,
) -> Result<(), Box<dyn Error>> {
    let properties = unsafe { instance.get_physical_device_properties(device_handle) };
    let mut properties2 = vk::PhysicalDeviceProperties2::default();
    unsafe {
        instance.get_physical_device_properties2(device_handle, &mut properties2);
    }

    let vendor = Vendor::from_vendor_id(properties.vendor_id)
        .unwrap_or_else(|| panic!("unknown vendor: {}", properties.vendor_id));
    let art = vendor.get_ascii_art();

    let info = get_device_info(
        &Device::new(instance, device_handle),
        (if is_ansi_supported() {
            vendor.get_alternative_style()
        } else {
            vendor.get_style()
        })[0],
    );

    let _ = enable_virtual_terminal_processing();

    for i in 0..art.len().max(info.len()) {
        let art_line = art
            .get(i)
            .map(String::as_str)
            .unwrap_or(r#"                                               "#);
        let info_line = info.get(i).map(String::as_str).unwrap_or(EMPTY);
        println!(" {} {}", art_line, info_line);
    }

    println!();
    Ok(())
}

/// Returns a vector of formatted strings representing the device info,
/// including extra vendor-specific and general device limits.
/// Lines for optional fields are only included if available.
fn get_device_info(device: &Device, color: &str) -> Vec<String> {
    let mut lines = Vec::new();

    let title = format!(
        "{}{}{}{}: {}",
        BOLD,
        color,
        device.device_name,
        RESET,
        device.device_type.name()
    );
    let underline_len = device.device_name.len() + device.device_type.name().len() + 3;
    let underline = "=".repeat(underline_len);

    let meter_width = 30;
    let filled = (device.characteristics.memory_pressure * meter_width as f32).round() as usize;

    // Basic device info.
    lines.push(title);
    lines.push(format!("{}{}{}", BOLD, color, underline));
    lines.push(format!(
        "{}{}Device{}: 0x{:X} : 0x{:X} ({})",
        ALIGNMENT,
        color,
        RESET,
        device.device_id,
        device.vendor_id,
        device.vendor.name(),
    ));
    lines.push(format!(
        "{}{}Driver{}: {} : {}",
        ALIGNMENT, color, RESET, device.driver_name, device.driver_info
    ));
    lines.push(format!(
        "{}{}API{}: {}",
        ALIGNMENT, color, RESET, device.api_version
    ));
    lines.push(format!(
        "{}{}VRAM{}: {}{}{} / {}",
        ALIGNMENT,
        color,
        RESET,
        color,
        format_bytes(device.heapbudget),
        RESET,
        format_bytes(device.heapsize)
    ));
    lines.push(format!(
        "{}[{}{}{}{}] % {}{:.2}{}",
        ALIGNMENT,
        color,
        "|".repeat(filled),
        RESET,
        " ".repeat(meter_width - filled),
        color,
        device.characteristics.memory_pressure * 100.0,
        RESET
    ));

    // Vendor-specific extra info.
    if let Some(cu) = device.characteristics.compute_units {
        lines.push(format!(
            "{}{}Compute Units{}: {}",
            ALIGNMENT, color, RESET, cu
        ));
    }
    if let Some(se) = device.characteristics.shader_engines {
        lines.push(format!(
            "{}{}Shader Engines{}: {}",
            ALIGNMENT, color, RESET, se
        ));
    }
    if let Some(sapec) = device.characteristics.shader_arrays_per_engine_count {
        lines.push(format!(
            "{}{}Shader Arrays per Engine{}: {}",
            ALIGNMENT, color, RESET, sapec
        ));
    }
    if let Some(cups) = device.characteristics.compute_units_per_shader_array {
        lines.push(format!(
            "{}{}Compute Units per Shader Array{}: {}",
            ALIGNMENT, color, RESET, cups
        ));
    }
    if let Some(simd) = device.characteristics.simd_per_compute_unit {
        lines.push(format!(
            "{}{}SIMD per Compute Unit{}: {}",
            ALIGNMENT, color, RESET, simd
        ));
    }
    if let Some(wfs) = device.characteristics.wavefronts_per_simd {
        lines.push(format!(
            "{}{}Wavefronts per SIMD{}: {}",
            ALIGNMENT, color, RESET, wfs
        ));
    }
    if let Some(wfsz) = device.characteristics.wavefront_size {
        lines.push(format!(
            "{}{}Wavefront Size{}: {}",
            ALIGNMENT, color, RESET, wfsz
        ));
    }
    if let Some(sm) = device.characteristics.streaming_multiprocessors {
        lines.push(format!(
            "{}{}Streaming Multiprocessors{}: {}",
            ALIGNMENT, color, RESET, sm
        ));
    }
    if let Some(wps) = device.characteristics.warps_per_sm {
        lines.push(format!(
            "{}{}Warps per SM{}: {}",
            ALIGNMENT, color, RESET, wps
        ));
    }

    // General device limits.
    // lines.push(format!(
    //     "{}{}Max Image Dimension 2D{}: {}",
    //     ALIGNMENT,
    //     color,
    //     RESET,
    //     format_bytes(device.characteristics.max_image_dimension_2d.into())
    // ));
    lines.push(format!(
        "{}{}Max Compute Shared Memory Size{}: {}",
        ALIGNMENT,
        color,
        RESET,
        format_bytes(device.characteristics.max_compute_shared_memory_size.into())
    ));
    lines.push(format!(
        "{}{}Max Compute Work Group Invocations{}: {}",
        ALIGNMENT,
        color,
        RESET,
        format_bytes(
            device
                .characteristics
                .max_compute_work_group_invocations
                .into()
        )
    ));

    let checkbox = |b: bool| if b { "[x]" } else { "[ ]" };
    let x = checkbox(device.characteristics.supports_ray_tracing);
    let y = checkbox(device.characteristics.dedicated_transfer_queue);
    let z = checkbox(device.characteristics.dedicated_async_compute_queue);

    lines.push(format!(
        "{}{}Raytracing{}: {} | {}Dedicated Transfer Queue{}: {} | {}Dedicated Async Compute Queue{}: {}",
        ALIGNMENT,
        color, RESET, x,
        color, RESET, y,
        color, RESET, z,
    ));

    lines
}

/// Converts a byte count into a human‐readable string with up to TB precision.
fn format_bytes(bytes: u64) -> String {
    const KB: f64 = 1024.0;
    const MB: f64 = KB * 1024.0;
    const GB: f64 = MB * 1024.0;
    const TB: f64 = GB * 1024.0;
    let bytes_f64 = bytes as f64;
    if bytes_f64 >= TB {
        format!("{:.3} TB", bytes_f64 / TB)
    } else if bytes_f64 >= GB {
        format!("{:.3} GB", bytes_f64 / GB)
    } else if bytes_f64 >= MB {
        format!("{:.3} MB", bytes_f64 / MB)
    } else if bytes_f64 >= KB {
        format!("{:.3} KB", bytes_f64 / KB)
    } else {
        format!("{} B", bytes)
    }
}

/// Iterates through API versions and prints info for every physical device
pub fn iterate_devices() -> Result<(), Box<dyn Error>> {
    let entry = {
        #[cfg(not(feature = "loaded"))]
        {
            Entry::linked()
        }
        #[cfg(feature = "loaded")]
        {
            match unsafe { Entry::load() } {
                Ok(entry) => entry,
                Err(e) => {
                    eprintln!("Failed to load entry: {:?}", e);
                    return Ok(());
                }
            }
        }
    };

    for api_version in [
        vk::API_VERSION_1_3,
        vk::API_VERSION_1_2,
        vk::API_VERSION_1_1,
        vk::API_VERSION_1_0,
    ] {
        let app_info = vk::ApplicationInfo {
            api_version,
            ..Default::default()
        };
        let create_info = vk::InstanceCreateInfo::default().application_info(&app_info);

        match unsafe { entry.create_instance(&create_info, None) } {
            Ok(instance) => match unsafe { instance.enumerate_physical_devices() } {
                Ok(devices) => {
                    for device in devices {
                        fetch_device(&instance, device)?;
                    }
                }
                Err(e) => {
                    eprintln!("Failed to enumerate physical devices: {:?}", e);
                }
            },
            Err(e) => {
                eprintln!("Failed to create instance: {:?}", e);
                continue;
            }
        };

        break;
    }
    Ok(())
}

#[cfg(windows)]
mod vt {
    use std::io::{Error, Result};
    use winapi::um::consoleapi::{GetConsoleMode, SetConsoleMode};
    use winapi::um::handleapi::INVALID_HANDLE_VALUE;
    use winapi::um::processenv::GetStdHandle;
    use winapi::um::winbase::STD_OUTPUT_HANDLE;
    use winapi::um::wincon::ENABLE_VIRTUAL_TERMINAL_PROCESSING;

    /// Enables Virtual Terminal Processing on Windows.
    pub fn enable_virtual_terminal_processing() -> Result<()> {
        unsafe {
            let std_out = GetStdHandle(STD_OUTPUT_HANDLE);
            if std_out == INVALID_HANDLE_VALUE {
                return Err(Error::last_os_error());
            }
            let mut mode = 0;
            if GetConsoleMode(std_out, &mut mode) == 0 {
                return Err(Error::last_os_error());
            }
            mode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
            if SetConsoleMode(std_out, mode) == 0 {
                return Err(Error::last_os_error());
            }
        }
        Ok(())
    }

    /// Checks if Virtual Terminal Processing is enabled.
    pub fn is_vt_enabled() -> bool {
        unsafe {
            let std_out = GetStdHandle(STD_OUTPUT_HANDLE);
            if std_out == INVALID_HANDLE_VALUE {
                return false;
            }
            let mut mode = 0;
            if GetConsoleMode(std_out, &mut mode) == 0 {
                return false;
            }
            (mode & ENABLE_VIRTUAL_TERMINAL_PROCESSING) != 0
        }
    }
}

#[cfg(not(windows))]
mod vt {
    use std::io::Result;

    /// On non‑Windows platforms, VT processing is typically enabled by default.
    pub fn enable_virtual_terminal_processing() -> Result<()> {
        Ok(())
    }

    /// Assume ANSI escape codes are supported.
    pub fn is_vt_enabled() -> bool {
        true
    }
}

/// Returns `true` if stdout is a TTY and (on Windows) VT processing is enabled.
fn is_ansi_supported() -> bool {
    atty::is(atty::Stream::Stdout) && vt::is_vt_enabled()
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::device::{Device, GPUCharacteristics};
    use crate::vendor::Vendor;

    /// For testing purposes we use the Unknown vendor variant.
    impl Vendor {
        pub fn dummy() -> Self {
            Vendor::Unknown
        }
    }

    /// Creates a dummy PhysicalDevice instance for tests.
    fn dummy_physical_device() -> Device {
        Device {
            vendor: Vendor::dummy(),
            device_name: "TestDevice".to_string(),
            device_type: crate::device::DeviceType::DiscreteGPU,
            device_id: 0xDEADBEEF,
            vendor_id: 0xBEEF,
            driver_name: "TestDriver".to_string(),
            driver_info: "TestDriverInfo".to_string(),
            api_version: "1.2.3.4".to_string(),
            heapbudget: 8 * 1024 * 1024 * 1024, // 8 GB
            heapsize: 10 * 1024 * 1024 * 1024,  // 10 GB
            characteristics: GPUCharacteristics {
                memory_pressure: 0.2, // 20%
                compute_units: Some(10),
                shader_engines: Some(2),
                shader_arrays_per_engine_count: Some(2),
                compute_units_per_shader_array: Some(5),
                simd_per_compute_unit: Some(64),
                wavefronts_per_simd: Some(4),
                wavefront_size: Some(32),
                streaming_multiprocessors: Some(46),
                warps_per_sm: Some(32),
                max_image_dimension_2d: 16384,
                max_compute_shared_memory_size: 65536,
                max_compute_work_group_invocations: 1024,
                dedicated_transfer_queue: true,
                dedicated_async_compute_queue: true,
                supports_ray_tracing: true,
            },
        }
    }

    #[test]
    fn test_format_bytes() {
        assert_eq!(format_bytes(500), "500 B");
        assert_eq!(format_bytes(1024), "1.000 KB");
        assert_eq!(format_bytes(1024 * 1024), "1.000 MB");
        assert_eq!(format_bytes(1024 * 1024 * 1024), "1.000 GB");
        assert_eq!(format_bytes(1024 * 1024 * 1024 * 1024), "1.000 TB");
    }

    #[test]
    fn test_get_device_info() {
        let device = dummy_physical_device();
        let color = "\x1B[32m";
        let info = get_device_info(&device, color);
        assert!(info.len() >= 9);
        assert!(info[0].contains("TestDevice"));
        assert!(info[0].contains(device.device_type.name()));
        assert!(info[2].contains("0xDEADBEEF"));
        assert!(info[2].contains("0xBEEF"));
        assert!(info[7].contains("10") || info[7].contains("N/A"));
        assert!(info[8].contains("32") || info[8].contains("N/A"));
    }
}