Struct vk_mem_erupt::AllocatorCreateFlags[][src]

pub struct AllocatorCreateFlags { /* fields omitted */ }
Expand description

Flags for configuring Allocator construction.

Implementations

No allocator configuration other than defaults.

Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. Using this flag may increase performance because internal mutexes are not used.

Enables usage of VK_KHR_dedicated_allocation extension.

Using this extenion will automatically allocate dedicated blocks of memory for some buffers and images instead of suballocating place for them out of bigger memory blocks (as if you explicitly used AllocationCreateFlags::DEDICATED_MEMORY flag) when it is recommended by the driver. It may improve performance on some GPUs.

You may set this flag only if you found out that following device extensions are supported, you enabled them while creating Vulkan device passed as AllocatorCreateInfo::device, and you want them to be used internally by this library:

  • VK_KHR_get_memory_requirements2
  • VK_KHR_dedicated_allocation

When this flag is set, you can experience following warnings reported by Vulkan validation layer. You can ignore them. > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.

Enables usage of VK_KHR_bind_memory2 extension.

The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion == VK_API_VERSION_1_0. When it’s VK_API_VERSION_1_1, the flag is ignored because the extension has been promoted to Vulkan 1.1.

You may set this flag only if you found out that this device extension is supported, you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, and you want it to be used internally by this library.

The extension provides functions vkBindBufferMemory2KHR and vkBindImageMemory2KHR, which allow to pass a chain of pNext structures while binding. This flag is required if you use pNext parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().

Enables usage of VK_EXT_memory_budget extension.

You may set this flag only if you found out that this device extension is supported, you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, and you want it to be used internally by this library, along with another instance extension VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).

The extension provides query for current memory usage and budget, which will probably be more accurate than an estimation used by the library otherwise.

Enables usage of VK_AMD_device_coherent_memory extension.

You may set this flag only if you:

  • found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
  • checked that VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory is true and set it while creating the Vulkan device,
  • want it to be used internally by this library.

The extension and accompanying device feature provide access to memory types with VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD and VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD flags. They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.

When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. To protect from this error, if you don’t create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, returning VK_ERROR_FEATURE_NOT_PRESENT.

Enables usage of “buffer device address” feature, which allows you to use function vkGetBufferDeviceAddress* to get raw GPU pointer to a buffer and pass it for usage inside a shader.

You may set this flag only if you:

  1. (For Vulkan version < 1.2) Found as available and enabled device extension VK_KHR_buffer_device_address. This extension is promoted to core Vulkan 1.2.
  2. Found as available and enabled device feature VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress.

When this flag is set, you can create buffers with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT using VMA. The library automatically adds VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT to allocated memory blocks wherever it might be needed.

For more information, see documentation chapter \ref enabling_buffer_device_address.

Enables usage of VK_EXT_memory_priority extension in the library.

You may set this flag only if you found available and enabled this device extension, along with VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE, while creating Vulkan device passed as VmaAllocatorCreateInfo::device.

When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.

A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. Larger values are higher priority. The granularity of the priorities is implementation-dependent. It is automatically passed to every call to vkAllocateMemory done by the library using structure VkMemoryPriorityAllocateInfoEXT. The value to be used for default priority is 0.5. For more details, see the documentation of the VK_EXT_memory_priority extension.

Returns an empty set of flags.

Returns the set containing all flags.

Returns the raw value of the flags currently stored.

Convert from underlying bit representation, unless that representation contains bits that do not correspond to a flag.

Convert from underlying bit representation, dropping any bits that do not correspond to flags.

Convert from underlying bit representation, preserving all bits (even those not corresponding to a defined flag).

Safety

The caller of the bitflags! macro can chose to allow or disallow extra bits for their bitflags type.

The caller of from_bits_unchecked() has to ensure that all bits correspond to a defined flag or that extra bits are valid for this bitflags type.

Returns true if no flags are currently stored.

Returns true if all flags are currently set.

Returns true if there are flags common to both self and other.

Returns true if all of the flags in other are contained within self.

Inserts the specified flags in-place.

Removes the specified flags in-place.

Toggles the specified flags in-place.

Inserts or removes the specified flags depending on the passed value.

Returns the intersection between the flags in self and other.

Specifically, the returned set contains only the flags which are present in both self and other.

This is equivalent to using the & operator (e.g. ops::BitAnd), as in flags & other.

Returns the union of between the flags in self and other.

Specifically, the returned set contains all flags which are present in either self or other, including any which are present in both (see Self::symmetric_difference if that is undesirable).

This is equivalent to using the | operator (e.g. ops::BitOr), as in flags | other.

Returns the difference between the flags in self and other.

Specifically, the returned set contains all flags present in self, except for the ones present in other.

It is also conceptually equivalent to the “bit-clear” operation: flags & !other (and this syntax is also supported).

This is equivalent to using the - operator (e.g. ops::Sub), as in flags - other.

Returns the symmetric difference between the flags in self and other.

Specifically, the returned set contains the flags present which are present in self or other, but that are not present in both. Equivalently, it contains the flags present in exactly one of the sets self and other.

This is equivalent to using the ^ operator (e.g. ops::BitXor), as in flags ^ other.

Returns the complement of this set of flags.

Specifically, the returned set contains all the flags which are not set in self, but which are allowed for this type.

Alternatively, it can be thought of as the set difference between Self::all() and self (e.g. Self::all() - self)

This is equivalent to using the ! operator (e.g. ops::Not), as in !flags.

Trait Implementations

Formats the value using the given formatter.

Returns the intersection between the two sets of flags.

The resulting type after applying the & operator.

Disables all flags disabled in the set.

Returns the union of the two sets of flags.

The resulting type after applying the | operator.

Adds the set of flags.

Returns the left flags, but with all the right flags toggled.

The resulting type after applying the ^ operator.

Toggles the set of flags.

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Construct AllocatorCreateFlags with default values

Returns the “default value” for a type. Read more

Extends a collection with the contents of an iterator. Read more

🔬 This is a nightly-only experimental API. (extend_one)

Extends a collection with exactly one element.

🔬 This is a nightly-only experimental API. (extend_one)

Reserves capacity in a collection for the given number of additional elements. Read more

Creates a value from an iterator. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

Formats the value using the given formatter.

Returns the complement of this set of flags.

The resulting type after applying the ! operator.

Formats the value using the given formatter.

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Returns the set difference of the two sets of flags.

The resulting type after applying the - operator.

Disables all flags enabled in the set.

Formats the value using the given formatter.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.