1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Copyright © 2019 Intel Corporation
//
// Copyright (C) 2020-2021 Alibaba Cloud. All rights reserved.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
use std::fmt::{self, Debug};
use std::mem::size_of;
use std::ops::Deref;
use vm_memory::{Address, Bytes, GuestAddress, GuestMemory};
use crate::{Descriptor, Error};
use virtio_bindings::bindings::virtio_ring::VRING_DESC_ALIGN_SIZE;
/// A virtio descriptor chain.
#[derive(Clone, Debug)]
pub struct DescriptorChain<M> {
mem: M,
desc_table: GuestAddress,
queue_size: u16,
head_index: u16,
next_index: u16,
ttl: u16,
yielded_bytes: u32,
is_indirect: bool,
}
impl<M> DescriptorChain<M>
where
M: Deref,
M::Target: GuestMemory,
{
fn with_ttl(
mem: M,
desc_table: GuestAddress,
queue_size: u16,
ttl: u16,
head_index: u16,
) -> Self {
DescriptorChain {
mem,
desc_table,
queue_size,
head_index,
next_index: head_index,
ttl,
is_indirect: false,
yielded_bytes: 0,
}
}
/// Create a new `DescriptorChain` instance.
///
/// # Arguments
/// * `mem` - the `GuestMemory` object that can be used to access the buffers pointed to by the
/// descriptor chain.
/// * `desc_table` - the address of the descriptor table.
/// * `queue_size` - the size of the queue, which is also the maximum size of a descriptor
/// chain.
/// * `head_index` - the descriptor index of the chain head.
pub(crate) fn new(mem: M, desc_table: GuestAddress, queue_size: u16, head_index: u16) -> Self {
Self::with_ttl(mem, desc_table, queue_size, queue_size, head_index)
}
/// Get the descriptor index of the chain head.
pub fn head_index(&self) -> u16 {
self.head_index
}
/// Return a `GuestMemory` object that can be used to access the buffers pointed to by the
/// descriptor chain.
pub fn memory(&self) -> &M::Target {
self.mem.deref()
}
/// Return an iterator that only yields the readable descriptors in the chain.
pub fn readable(self) -> DescriptorChainRwIter<M> {
DescriptorChainRwIter {
chain: self,
writable: false,
}
}
/// Return an iterator that only yields the writable descriptors in the chain.
pub fn writable(self) -> DescriptorChainRwIter<M> {
DescriptorChainRwIter {
chain: self,
writable: true,
}
}
// Alters the internal state of the `DescriptorChain` to switch iterating over an
// indirect descriptor table defined by `desc`.
fn switch_to_indirect_table(&mut self, desc: Descriptor) -> Result<(), Error> {
// Check the VIRTQ_DESC_F_INDIRECT flag (i.e., is_indirect) is not set inside
// an indirect descriptor.
// (see VIRTIO Spec, Section 2.6.5.3.1 Driver Requirements: Indirect Descriptors)
if self.is_indirect {
return Err(Error::InvalidIndirectDescriptor);
}
// Alignment requirements for vring elements start from virtio 1.0,
// but this is not necessary for address of indirect descriptor.
if desc.len() & (VRING_DESC_ALIGN_SIZE - 1) != 0 {
return Err(Error::InvalidIndirectDescriptorTable);
}
// It is safe to do a plain division since we checked above that desc.len() is a multiple of
// VRING_DESC_ALIGN_SIZE, and VRING_DESC_ALIGN_SIZE is != 0.
let table_len = desc.len() / VRING_DESC_ALIGN_SIZE;
if table_len > u32::from(u16::MAX) {
return Err(Error::InvalidIndirectDescriptorTable);
}
self.desc_table = desc.addr();
// try_from cannot fail as we've checked table_len above
self.queue_size = u16::try_from(table_len).expect("invalid table_len");
self.next_index = 0;
self.ttl = self.queue_size;
self.is_indirect = true;
Ok(())
}
}
impl<M> Iterator for DescriptorChain<M>
where
M: Deref,
M::Target: GuestMemory,
{
type Item = Descriptor;
/// Return the next descriptor in this descriptor chain, if there is one.
///
/// Note that this is distinct from the next descriptor chain returned by
/// [`AvailIter`](struct.AvailIter.html), which is the head of the next
/// _available_ descriptor chain.
fn next(&mut self) -> Option<Self::Item> {
if self.ttl == 0 || self.next_index >= self.queue_size {
return None;
}
let desc_addr = self
.desc_table
// The multiplication can not overflow an u64 since we are multiplying an u16 with a
// small number.
.checked_add(self.next_index as u64 * size_of::<Descriptor>() as u64)?;
// The guest device driver should not touch the descriptor once submitted, so it's safe
// to use read_obj() here.
let desc = self.mem.read_obj::<Descriptor>(desc_addr).ok()?;
if desc.refers_to_indirect_table() {
self.switch_to_indirect_table(desc).ok()?;
return self.next();
}
// constructing a chain that is longer than 2^32 bytes is illegal,
// let's terminate the iteration if something violated this.
// (VIRTIO v1.2, 2.7.5.2: "Drivers MUST NOT add a descriptor chain
// longer than 2^32 bytes in total;")
match self.yielded_bytes.checked_add(desc.len()) {
Some(yielded_bytes) => self.yielded_bytes = yielded_bytes,
None => return None,
};
if desc.has_next() {
self.next_index = desc.next();
// It's ok to decrement `self.ttl` here because we check at the start of the method
// that it's greater than 0.
self.ttl -= 1;
} else {
self.ttl = 0;
}
Some(desc)
}
}
/// An iterator for readable or writable descriptors.
#[derive(Clone)]
pub struct DescriptorChainRwIter<M> {
chain: DescriptorChain<M>,
writable: bool,
}
impl<M> Iterator for DescriptorChainRwIter<M>
where
M: Deref,
M::Target: GuestMemory,
{
type Item = Descriptor;
/// Return the next readable/writeable descriptor (depending on the `writable` value) in this
/// descriptor chain, if there is one.
///
/// Note that this is distinct from the next descriptor chain returned by
/// [`AvailIter`](struct.AvailIter.html), which is the head of the next
/// _available_ descriptor chain.
fn next(&mut self) -> Option<Self::Item> {
loop {
match self.chain.next() {
Some(v) => {
if v.is_write_only() == self.writable {
return Some(v);
}
}
None => return None,
}
}
}
}
// We can't derive Debug, because rustc doesn't generate the `M::T: Debug` constraint
impl<M> Debug for DescriptorChainRwIter<M>
where
M: Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("DescriptorChainRwIter")
.field("chain", &self.chain)
.field("writable", &self.writable)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::mock::{DescriptorTable, MockSplitQueue};
use virtio_bindings::bindings::virtio_ring::{VRING_DESC_F_INDIRECT, VRING_DESC_F_NEXT};
use vm_memory::GuestMemoryMmap;
#[test]
fn test_checked_new_descriptor_chain() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
assert!(vq.end().0 < 0x1000);
// index >= queue_size
assert!(
DescriptorChain::<&GuestMemoryMmap>::new(m, vq.start(), 16, 16)
.next()
.is_none()
);
// desc_table address is way off
assert!(
DescriptorChain::<&GuestMemoryMmap>::new(m, GuestAddress(0x00ff_ffff_ffff), 16, 0)
.next()
.is_none()
);
{
// the first desc has a normal len, and the next_descriptor flag is set
// but the the index of the next descriptor is too large
let desc = Descriptor::new(0x1000, 0x1000, VRING_DESC_F_NEXT as u16, 16);
vq.desc_table().store(0, desc).unwrap();
let mut c = DescriptorChain::<&GuestMemoryMmap>::new(m, vq.start(), 16, 0);
c.next().unwrap();
assert!(c.next().is_none());
}
// finally, let's test an ok chain
{
let desc = Descriptor::new(0x1000, 0x1000, VRING_DESC_F_NEXT as u16, 1);
vq.desc_table().store(0, desc).unwrap();
let desc = Descriptor::new(0x2000, 0x1000, 0, 0);
vq.desc_table().store(1, desc).unwrap();
let mut c = DescriptorChain::<&GuestMemoryMmap>::new(m, vq.start(), 16, 0);
assert_eq!(
c.memory() as *const GuestMemoryMmap,
m as *const GuestMemoryMmap
);
assert_eq!(c.desc_table, vq.start());
assert_eq!(c.queue_size, 16);
assert_eq!(c.ttl, c.queue_size);
let desc = c.next().unwrap();
assert_eq!(desc.addr(), GuestAddress(0x1000));
assert_eq!(desc.len(), 0x1000);
assert_eq!(desc.flags(), VRING_DESC_F_NEXT as u16);
assert_eq!(desc.next(), 1);
assert_eq!(c.ttl, c.queue_size - 1);
assert!(c.next().is_some());
// The descriptor above was the last from the chain, so `ttl` should be 0 now.
assert_eq!(c.ttl, 0);
assert!(c.next().is_none());
assert_eq!(c.ttl, 0);
}
}
#[test]
fn test_ttl_wrap_around() {
const QUEUE_SIZE: u16 = 16;
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x100000)]).unwrap();
let vq = MockSplitQueue::new(m, QUEUE_SIZE);
// Populate the entire descriptor table with entries. Only the last one should not have the
// VIRTQ_DESC_F_NEXT set.
for i in 0..QUEUE_SIZE - 1 {
let desc = Descriptor::new(
0x1000 * (i + 1) as u64,
0x1000,
VRING_DESC_F_NEXT as u16,
i + 1,
);
vq.desc_table().store(i, desc).unwrap();
}
let desc = Descriptor::new((0x1000 * 16) as u64, 0x1000, 0, 0);
vq.desc_table().store(QUEUE_SIZE - 1, desc).unwrap();
let mut c = DescriptorChain::<&GuestMemoryMmap>::new(m, vq.start(), QUEUE_SIZE, 0);
assert_eq!(c.ttl, c.queue_size);
// Validate that `ttl` wraps around even when the entire descriptor table is populated.
for i in 0..QUEUE_SIZE {
let _desc = c.next().unwrap();
assert_eq!(c.ttl, c.queue_size - i - 1);
}
assert!(c.next().is_none());
}
#[test]
fn test_new_from_indirect_descriptor() {
// This is testing that chaining an indirect table works as expected. It is also a negative
// test for the following requirement from the spec:
// `A driver MUST NOT set both VIRTQ_DESC_F_INDIRECT and VIRTQ_DESC_F_NEXT in flags.`. In
// case the driver is setting both of these flags, we check that the device doesn't panic.
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let dtable = vq.desc_table();
// Create a chain with one normal descriptor and one pointing to an indirect table.
let desc = Descriptor::new(0x6000, 0x1000, VRING_DESC_F_NEXT as u16, 1);
dtable.store(0, desc).unwrap();
// The spec forbids setting both VIRTQ_DESC_F_INDIRECT and VIRTQ_DESC_F_NEXT in flags. We do
// not currently enforce this rule, we just ignore the VIRTQ_DESC_F_NEXT flag.
let desc = Descriptor::new(
0x7000,
0x1000,
(VRING_DESC_F_INDIRECT | VRING_DESC_F_NEXT) as u16,
2,
);
dtable.store(1, desc).unwrap();
let desc = Descriptor::new(0x8000, 0x1000, 0, 0);
dtable.store(2, desc).unwrap();
let mut c: DescriptorChain<&GuestMemoryMmap> = DescriptorChain::new(m, vq.start(), 16, 0);
// create an indirect table with 4 chained descriptors
let idtable = DescriptorTable::new(m, GuestAddress(0x7000), 4);
for i in 0..4u16 {
let desc: Descriptor = if i < 3 {
Descriptor::new(0x1000 * i as u64, 0x1000, VRING_DESC_F_NEXT as u16, i + 1)
} else {
Descriptor::new(0x1000 * i as u64, 0x1000, 0, 0)
};
idtable.store(i, desc).unwrap();
}
assert_eq!(c.head_index(), 0);
// Consume the first descriptor.
c.next().unwrap();
// The chain logic hasn't parsed the indirect descriptor yet.
assert!(!c.is_indirect);
// Try to iterate through the indirect descriptor chain.
for i in 0..4 {
let desc = c.next().unwrap();
assert!(c.is_indirect);
if i < 3 {
assert_eq!(desc.flags(), VRING_DESC_F_NEXT as u16);
assert_eq!(desc.next(), i + 1);
}
}
// Even though we added a new descriptor after the one that is pointing to the indirect
// table, this descriptor won't be available when parsing the chain.
assert!(c.next().is_none());
}
#[test]
fn test_indirect_descriptor_address_noaligned() {
// Alignment requirements for vring elements start from virtio 1.0,
// but this is not necessary for address of indirect descriptor.
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let dtable = vq.desc_table();
// Create a chain with a descriptor pointing to an indirect table with unaligned address.
let desc = Descriptor::new(
0x7001,
0x1000,
(VRING_DESC_F_INDIRECT | VRING_DESC_F_NEXT) as u16,
2,
);
dtable.store(0, desc).unwrap();
let mut c: DescriptorChain<&GuestMemoryMmap> = DescriptorChain::new(m, vq.start(), 16, 0);
// Create an indirect table with 4 chained descriptors.
let idtable = DescriptorTable::new(m, GuestAddress(0x7001), 4);
for i in 0..4u16 {
let desc: Descriptor = if i < 3 {
Descriptor::new(0x1000 * i as u64, 0x1000, VRING_DESC_F_NEXT as u16, i + 1)
} else {
Descriptor::new(0x1000 * i as u64, 0x1000, 0, 0)
};
idtable.store(i, desc).unwrap();
}
// Try to iterate through the indirect descriptor chain.
for i in 0..4 {
let desc = c.next().unwrap();
assert!(c.is_indirect);
if i < 3 {
assert_eq!(desc.flags(), VRING_DESC_F_NEXT as u16);
assert_eq!(desc.next(), i + 1);
}
}
}
#[test]
fn test_indirect_descriptor_err() {
// We are testing here different misconfigurations of the indirect table. For these error
// case scenarios, the iterator over the descriptor chain won't return a new descriptor.
{
let m = &GuestMemoryMmap::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
// Create a chain with a descriptor pointing to an invalid indirect table: len not a
// multiple of descriptor size.
let desc = Descriptor::new(0x1000, 0x1001, VRING_DESC_F_INDIRECT as u16, 0);
vq.desc_table().store(0, desc).unwrap();
let mut c: DescriptorChain<&GuestMemoryMmap> =
DescriptorChain::new(m, vq.start(), 16, 0);
assert!(c.next().is_none());
}
{
let m = &GuestMemoryMmap::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
// Create a chain with a descriptor pointing to an invalid indirect table: table len >
// u16::MAX.
let desc = Descriptor::new(
0x1000,
(u16::MAX as u32 + 1) * VRING_DESC_ALIGN_SIZE,
VRING_DESC_F_INDIRECT as u16,
0,
);
vq.desc_table().store(0, desc).unwrap();
let mut c: DescriptorChain<&GuestMemoryMmap> =
DescriptorChain::new(m, vq.start(), 16, 0);
assert!(c.next().is_none());
}
{
let m = &GuestMemoryMmap::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
// Create a chain with a descriptor pointing to an indirect table.
let desc = Descriptor::new(0x1000, 0x1000, VRING_DESC_F_INDIRECT as u16, 0);
vq.desc_table().store(0, desc).unwrap();
// It's ok for an indirect descriptor to have flags = 0.
let desc = Descriptor::new(0x3000, 0x1000, 0, 0);
m.write_obj(desc, GuestAddress(0x1000)).unwrap();
let mut c: DescriptorChain<&GuestMemoryMmap> =
DescriptorChain::new(m, vq.start(), 16, 0);
assert!(c.next().is_some());
// But it's not allowed to have an indirect descriptor that points to another indirect
// table.
let desc = Descriptor::new(0x3000, 0x1000, VRING_DESC_F_INDIRECT as u16, 0);
m.write_obj(desc, GuestAddress(0x1000)).unwrap();
let mut c: DescriptorChain<&GuestMemoryMmap> =
DescriptorChain::new(m, vq.start(), 16, 0);
assert!(c.next().is_none());
}
}
}