1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// Copyright (C) 2020-2021 Alibaba Cloud. All rights reserved.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
use std::num::Wrapping;
use std::ops::Deref;
use std::sync::atomic::Ordering;
use vm_memory::GuestAddressSpace;
use crate::{AvailIter, Error, QueueGuard, QueueState, QueueStateGuard, QueueStateT};
/// A convenient wrapper struct for a virtio queue, with associated `GuestMemory` object.
///
/// # Example
///
/// ```rust
/// use virtio_queue::{Queue, QueueState};
/// use vm_memory::{Bytes, GuestAddress, GuestAddressSpace, GuestMemoryMmap};
///
/// let m = GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
/// let mut queue = Queue::<&GuestMemoryMmap, QueueState>::new(&m, 1024);
///
/// // First, the driver sets up the queue; this set up is done via writes on the bus (PCI, MMIO).
/// queue.set_size(8);
/// queue.set_desc_table_address(Some(0x1000), None);
/// queue.set_avail_ring_address(Some(0x2000), None);
/// queue.set_used_ring_address(Some(0x3000), None);
/// queue.set_event_idx(true);
/// queue.set_ready(true);
/// // The user should check if the queue is valid before starting to use it.
/// assert!(queue.is_valid());
///
/// // Here the driver would add entries in the available ring and then update the `idx` field of
/// // the available ring (address = 0x2000 + 2).
/// m.write_obj(3, GuestAddress(0x2002));
///
/// loop {
/// queue.disable_notification().unwrap();
///
/// // Consume entries from the available ring.
/// while let Some(chain) = queue.iter().unwrap().next() {
/// // Process the descriptor chain, and then add an entry in the used ring and optionally
/// // notify the driver.
/// queue.add_used(chain.head_index(), 0x100).unwrap();
///
/// if queue.needs_notification().unwrap() {
/// // Here we would notify the driver it has new entries in the used ring to consume.
/// }
/// }
/// if !queue.enable_notification().unwrap() {
/// break;
/// }
/// }
///
/// // We can reset the queue at some point.
/// queue.reset();
/// // The queue should not be ready after reset.
/// assert!(!queue.ready());
/// ```
#[derive(Clone, Debug)]
pub struct Queue<M: GuestAddressSpace, S: QueueStateT = QueueState> {
/// Guest memory object associated with the queue.
pub mem: M,
/// Virtio queue state.
pub state: S,
}
impl<M: GuestAddressSpace, S: QueueStateT> Queue<M, S> {
/// Construct an empty virtio queue with the given `max_size`.
///
/// # Arguments
/// * `mem` - the guest memory object that can be used to access the queue buffers.
/// * `max_size` - the maximum size (and the default one) of the queue.
pub fn new(mem: M, max_size: u16) -> Self {
Queue {
mem,
state: S::new(max_size),
}
}
/// Check whether the queue configuration is valid.
pub fn is_valid(&self) -> bool {
self.state.is_valid(self.mem.memory().deref())
}
/// Reset the queue to the initial state.
pub fn reset(&mut self) {
self.state.reset()
}
/// Get an exclusive reference to the underlying `QueueState` object.
///
/// Logically this method will acquire the underlying lock protecting the `QueueState` Object.
/// The lock will be released when the returned object gets dropped.
pub fn lock(&mut self) -> <S as QueueStateGuard>::G {
self.state.lock()
}
/// Get an exclusive reference to the underlying `QueueState` object with an associated
/// `GuestMemory` object.
///
/// Logically this method will acquire the underlying lock protecting the `QueueState` Object.
/// The lock will be released when the returned object gets dropped.
pub fn lock_with_memory(
&mut self,
) -> QueueGuard<<M as GuestAddressSpace>::T, <S as QueueStateGuard>::G> {
QueueGuard::new(self.state.lock(), self.mem.memory())
}
/// Get the maximum size of the virtio queue.
pub fn max_size(&self) -> u16 {
self.state.max_size()
}
/// Configure the queue size for the virtio queue.
///
/// # Arguments
/// * `size` - the queue size; it should be a power of two, different than 0 and less than or
/// equal to the value reported by `max_size()`, otherwise the queue size remains the
/// default one (which is the maximum one).
pub fn set_size(&mut self, size: u16) {
self.state.set_size(size);
}
/// Check whether the queue is ready to be processed.
pub fn ready(&self) -> bool {
self.state.ready()
}
/// Configure the queue to the `ready for processing` state.
///
/// # Arguments
/// * `ready` - a boolean to indicate whether the queue is ready to be used or not.
pub fn set_ready(&mut self, ready: bool) {
self.state.set_ready(ready)
}
/// Set the descriptor table address for the queue.
///
/// The descriptor table address is 64-bit, the corresponding part will be updated if 'low'
/// and/or `high` is `Some` and valid.
///
/// # Arguments
/// * `low` - an optional value for the lowest 32 bits of the address.
/// * `high` - an optional value for the highest 32 bits of the address.
pub fn set_desc_table_address(&mut self, low: Option<u32>, high: Option<u32>) {
self.state.set_desc_table_address(low, high);
}
/// Set the available ring address for the queue.
///
/// The available ring address is 64-bit, the corresponding part will be updated if 'low'
/// and/or `high` is `Some` and valid.
///
/// # Arguments
/// * `low` - an optional value for the lowest 32 bits of the address.
/// * `high` - an optional value for the highest 32 bits of the address.
pub fn set_avail_ring_address(&mut self, low: Option<u32>, high: Option<u32>) {
self.state.set_avail_ring_address(low, high);
}
/// Set the used ring address for the queue.
///
/// The used ring address is 64-bit, the corresponding part will be updated if 'low'
/// and/or `high` is `Some` and valid.
///
/// # Arguments
/// * `low` - an optional value for the lowest 32 bits of the address.
/// * `high` - an optional value for the highest 32 bits of the address.
pub fn set_used_ring_address(&mut self, low: Option<u32>, high: Option<u32>) {
self.state.set_used_ring_address(low, high);
}
/// Enable/disable the VIRTIO_F_RING_EVENT_IDX feature for interrupt coalescing.
///
/// # Arguments
/// * `enabled` - a boolean to indicate whether the VIRTIO_F_RING_EVENT_IDX feature was
/// successfully negotiated or not.
pub fn set_event_idx(&mut self, enabled: bool) {
self.state.set_event_idx(enabled)
}
/// Read the `idx` field from the available ring.
///
/// # Arguments
/// * `order` - the memory ordering used to access the `idx` field from memory.
pub fn avail_idx(&self, order: Ordering) -> Result<Wrapping<u16>, Error> {
self.state.avail_idx(self.mem.memory().deref(), order)
}
/// Put a used descriptor head into the used ring.
///
/// # Arguments
/// * `head_index` - the index of the used descriptor chain.
/// * `len` - the total length of the descriptor chain which was used (written to).
pub fn add_used(&mut self, head_index: u16, len: u32) -> Result<(), Error> {
self.state
.add_used(self.mem.memory().deref(), head_index, len)
}
/// Enable notification events from the guest driver.
///
/// Return true if one or more descriptors can be consumed from the available ring after
/// notifications were enabled (and thus it's possible there will be no corresponding
/// notification).
pub fn enable_notification(&mut self) -> Result<bool, Error> {
self.state.enable_notification(self.mem.memory().deref())
}
/// Disable notification events from the guest driver.
pub fn disable_notification(&mut self) -> Result<(), Error> {
self.state.disable_notification(self.mem.memory().deref())
}
/// Check whether a notification to the guest is needed.
///
/// Please note this method has side effects: once it returns `true`, it considers the
/// driver will actually be notified, remember the associated index in the used ring, and
/// won't return `true` again until the driver updates `used_event` and/or the notification
/// conditions hold once more.
pub fn needs_notification(&mut self) -> Result<bool, Error> {
self.state.needs_notification(self.mem.memory().deref())
}
/// Return the index of the next entry in the available ring.
pub fn next_avail(&self) -> u16 {
self.state.next_avail()
}
/// Set the index of the next entry in the available ring.
///
/// # Arguments
/// * `next_avail` - the index of the next available ring entry.
pub fn set_next_avail(&mut self, next_avail: u16) {
self.state.set_next_avail(next_avail);
}
}
impl<M: GuestAddressSpace> Queue<M, QueueState> {
/// A consuming iterator over all available descriptor chain heads offered by the driver.
pub fn iter(&mut self) -> Result<AvailIter<'_, M::T>, Error> {
self.state.iter(self.mem.memory())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::defs::{
DEFAULT_AVAIL_RING_ADDR, DEFAULT_DESC_TABLE_ADDR, DEFAULT_USED_RING_ADDR,
VIRTQ_DESC_F_NEXT, VIRTQ_USED_F_NO_NOTIFY,
};
use crate::mock::MockSplitQueue;
use crate::Descriptor;
use vm_memory::{Address, Bytes, GuestAddress, GuestMemoryMmap};
#[test]
fn test_queue_is_valid() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
// q is currently valid
assert!(q.is_valid());
// shouldn't be valid when not marked as ready
q.set_ready(false);
assert_eq!(q.ready(), false);
assert!(!q.is_valid());
q.set_ready(true);
// shouldn't be allowed to set a size > max_size
q.set_size(q.max_size() << 1);
assert_eq!(q.state.size, q.max_size());
// or set the size to 0
q.set_size(0);
assert_eq!(q.state.size, q.max_size());
// or set a size which is not a power of 2
q.set_size(11);
assert_eq!(q.state.size, q.max_size());
// but should be allowed to set a size if 0 < size <= max_size and size is a power of two
q.set_size(4);
assert_eq!(q.state.size, 4);
q.state.size = q.max_size();
// shouldn't be allowed to set an address that breaks the alignment constraint
q.set_desc_table_address(Some(0xf), None);
assert_eq!(q.state.desc_table.0, vq.desc_table_addr().0);
// should be allowed to set an aligned out of bounds address
q.set_desc_table_address(Some(0xffff_fff0), None);
assert_eq!(q.state.desc_table.0, 0xffff_fff0);
// but shouldn't be valid
assert!(!q.is_valid());
// but should be allowed to set a valid description table address
q.set_desc_table_address(Some(0x10), None);
assert_eq!(q.state.desc_table.0, 0x10);
assert!(q.is_valid());
let addr = vq.desc_table_addr().0;
q.set_desc_table_address(Some(addr as u32), Some((addr >> 32) as u32));
// shouldn't be allowed to set an address that breaks the alignment constraint
q.set_avail_ring_address(Some(0x1), None);
assert_eq!(q.state.avail_ring.0, vq.avail_addr().0);
// should be allowed to set an aligned out of bounds address
q.set_avail_ring_address(Some(0xffff_fffe), None);
assert_eq!(q.state.avail_ring.0, 0xffff_fffe);
// but shouldn't be valid
assert!(!q.is_valid());
// but should be allowed to set a valid available ring address
q.set_avail_ring_address(Some(0x2), None);
assert_eq!(q.state.avail_ring.0, 0x2);
assert!(q.is_valid());
let addr = vq.avail_addr().0;
q.set_avail_ring_address(Some(addr as u32), Some((addr >> 32) as u32));
// shouldn't be allowed to set an address that breaks the alignment constraint
q.set_used_ring_address(Some(0x3), None);
assert_eq!(q.state.used_ring.0, vq.used_addr().0);
// should be allowed to set an aligned out of bounds address
q.set_used_ring_address(Some(0xffff_fffc), None);
assert_eq!(q.state.used_ring.0, 0xffff_fffc);
// but shouldn't be valid
assert!(!q.is_valid());
// but should be allowed to set a valid used ring address
q.set_used_ring_address(Some(0x4), None);
assert_eq!(q.state.used_ring.0, 0x4);
let addr = vq.used_addr().0;
q.set_used_ring_address(Some(addr as u32), Some((addr >> 32) as u32));
assert!(q.is_valid());
}
#[test]
fn test_add_used() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
assert_eq!(u16::from_le(vq.used().idx().load()), 0);
// index too large
assert!(q.add_used(16, 0x1000).is_err());
assert_eq!(u16::from_le(vq.used().idx().load()), 0);
// should be ok
q.add_used(1, 0x1000).unwrap();
assert_eq!(q.state.next_used, Wrapping(1));
assert_eq!(u16::from_le(vq.used().idx().load()), 1);
let x = vq.used().ring().ref_at(0).load();
assert_eq!(x.id(), 1);
assert_eq!(x.len(), 0x1000);
}
#[test]
fn test_reset_queue() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
q.set_size(8);
// The address set by `MockSplitQueue` for the descriptor table is DEFAULT_DESC_TABLE_ADDR,
// so let's change it for testing the reset.
q.set_desc_table_address(Some(0x5000), None);
// Same for `event_idx_enabled`, `next_avail` `next_used` and `signalled_used`.
q.set_event_idx(true);
q.set_next_avail(2);
q.add_used(1, 200).unwrap();
q.state.signalled_used = Some(Wrapping(15));
assert_eq!(q.state.size, 8);
// `create_queue` also marks the queue as ready.
assert_eq!(q.state.ready, true);
assert_ne!(q.state.desc_table, GuestAddress(DEFAULT_DESC_TABLE_ADDR));
assert_ne!(q.state.avail_ring, GuestAddress(DEFAULT_AVAIL_RING_ADDR));
assert_ne!(q.state.used_ring, GuestAddress(DEFAULT_USED_RING_ADDR));
assert_ne!(q.state.next_avail, Wrapping(0));
assert_ne!(q.state.next_used, Wrapping(0));
assert_ne!(q.state.signalled_used, None);
assert_eq!(q.state.event_idx_enabled, true);
q.reset();
assert_eq!(q.state.size, 16);
assert_eq!(q.state.ready, false);
assert_eq!(q.state.desc_table, GuestAddress(DEFAULT_DESC_TABLE_ADDR));
assert_eq!(q.state.avail_ring, GuestAddress(DEFAULT_AVAIL_RING_ADDR));
assert_eq!(q.state.used_ring, GuestAddress(DEFAULT_USED_RING_ADDR));
assert_eq!(q.state.next_avail, Wrapping(0));
assert_eq!(q.state.next_used, Wrapping(0));
assert_eq!(q.state.signalled_used, None);
assert_eq!(q.state.event_idx_enabled, false);
}
#[test]
fn test_needs_notification() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let qsize = 16;
let vq = MockSplitQueue::new(m, qsize);
let mut q = vq.create_queue(m);
let avail_addr = vq.avail_addr();
// It should always return true when EVENT_IDX isn't enabled.
for i in 0..qsize {
q.state.next_used = Wrapping(i);
assert_eq!(q.needs_notification().unwrap(), true);
}
m.write_obj::<u16>(
u16::to_le(4),
avail_addr.unchecked_add(4 + qsize as u64 * 2),
)
.unwrap();
q.state.set_event_idx(true);
// Incrementing up to this value causes an `u16` to wrap back to 0.
let wrap = u32::from(u16::MAX) + 1;
for i in 0..wrap + 12 {
q.state.next_used = Wrapping(i as u16);
// Let's test wrapping around the maximum index value as well.
let expected = i == 5 || i == (5 + wrap) || q.state.signalled_used.is_none();
assert_eq!(q.needs_notification().unwrap(), expected);
}
m.write_obj::<u16>(8, avail_addr.unchecked_add(4 + qsize as u64 * 2))
.unwrap();
// Returns `false` because `signalled_used` already passed this value.
assert_eq!(q.needs_notification().unwrap(), false);
m.write_obj::<u16>(15, avail_addr.unchecked_add(4 + qsize as u64 * 2))
.unwrap();
assert_eq!(q.needs_notification().unwrap(), false);
q.state.next_used = Wrapping(15);
assert_eq!(q.needs_notification().unwrap(), false);
q.state.next_used = Wrapping(0);
assert_eq!(q.needs_notification().unwrap(), true);
assert_eq!(q.needs_notification().unwrap(), false);
m.write_obj::<u16>(u16::MAX - 3, avail_addr.unchecked_add(4 + qsize as u64 * 2))
.unwrap();
q.state.next_used = Wrapping(u16::MAX - 2);
// Returns `true` because the value we wrote in the `used_event` < the next used value and
// the last `signalled_used` is 0.
assert_eq!(q.needs_notification().unwrap(), true);
}
#[test]
fn test_enable_disable_notification() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
let used_addr = vq.used_addr();
assert_eq!(q.state.event_idx_enabled, false);
q.enable_notification().unwrap();
let v = m.read_obj::<u16>(used_addr).map(u16::from_le).unwrap();
assert_eq!(v, 0);
q.disable_notification().unwrap();
let v = m.read_obj::<u16>(used_addr).map(u16::from_le).unwrap();
assert_eq!(v, VIRTQ_USED_F_NO_NOTIFY);
q.enable_notification().unwrap();
let v = m.read_obj::<u16>(used_addr).map(u16::from_le).unwrap();
assert_eq!(v, 0);
q.set_event_idx(true);
let avail_addr = vq.avail_addr();
m.write_obj::<u16>(u16::to_le(2), avail_addr.unchecked_add(2))
.unwrap();
assert_eq!(q.enable_notification().unwrap(), true);
q.state.next_avail = Wrapping(2);
assert_eq!(q.enable_notification().unwrap(), false);
m.write_obj::<u16>(u16::to_le(8), avail_addr.unchecked_add(2))
.unwrap();
assert_eq!(q.enable_notification().unwrap(), true);
q.state.next_avail = Wrapping(8);
assert_eq!(q.enable_notification().unwrap(), false);
}
#[test]
fn test_consume_chains_with_notif() {
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
// q is currently valid.
assert!(q.is_valid());
// The chains are (0, 1), (2, 3, 4), (5, 6), (7, 8), (9, 10, 11, 12).
for i in 0..13 {
let flags = match i {
1 | 4 | 6 | 8 | 12 => 0,
_ => VIRTQ_DESC_F_NEXT,
};
let desc = Descriptor::new((0x1000 * (i + 1)) as u64, 0x1000, flags, i + 1);
vq.desc_table().store(i, desc);
}
vq.avail().ring().ref_at(0).store(u16::to_le(0));
vq.avail().ring().ref_at(1).store(u16::to_le(2));
vq.avail().ring().ref_at(2).store(u16::to_le(5));
vq.avail().ring().ref_at(3).store(u16::to_le(7));
vq.avail().ring().ref_at(4).store(u16::to_le(9));
// Let the device know it can consume chains with the index < 2.
vq.avail().idx().store(u16::to_le(2));
// No descriptor chains are consumed at this point.
assert_eq!(q.next_avail(), 0);
let mut i = 0;
loop {
i += 1;
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// Here the device would consume entries from the available ring, add an entry in
// the used ring and optionally notify the driver. For the purpose of this test, we
// don't need to do anything with the chain, only consume it.
}
if !q.enable_notification().unwrap() {
break;
}
}
// The chains should be consumed in a single loop iteration because there's nothing updating
// the `idx` field of the available ring in the meantime.
assert_eq!(i, 1);
// The next chain that can be consumed should have index 2.
assert_eq!(q.next_avail(), 2);
// Let the device know it can consume one more chain.
vq.avail().idx().store(u16::to_le(3));
i = 0;
loop {
i += 1;
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// In a real use case, we would do something with the chain here.
}
// For the simplicity of the test we are updating here the `idx` value of the available
// ring. Ideally this should be done on a separate thread.
// Because of this update, the loop should be iterated again to consume the new
// available descriptor chains.
vq.avail().idx().store(u16::to_le(4));
if !q.enable_notification().unwrap() {
break;
}
}
assert_eq!(i, 2);
// The next chain that can be consumed should have index 4.
assert_eq!(q.next_avail(), 4);
// Set an `idx` that is bigger than the number of entries added in the ring.
// This is an allowed scenario, but the indexes of the chain will have unexpected values.
vq.avail().idx().store(u16::to_le(7));
loop {
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// In a real use case, we would do something with the chain here.
}
if !q.enable_notification().unwrap() {
break;
}
}
assert_eq!(q.next_avail(), 7);
}
#[test]
fn test_invalid_avail_idx() {
// This is a negative test for the following MUST from the spec: `A driver MUST NOT
// decrement the available idx on a virtqueue (ie. there is no way to “unexpose” buffers).`.
// We validate that for this misconfiguration, the device does not panic.
let m = &GuestMemoryMmap::<()>::from_ranges(&[(GuestAddress(0), 0x10000)]).unwrap();
let vq = MockSplitQueue::new(m, 16);
let mut q = vq.create_queue(m);
// q is currently valid.
assert!(q.is_valid());
// The chains are (0, 1), (2, 3, 4), (5, 6).
for i in 0..7 {
let flags = match i {
1 | 4 | 6 => 0,
_ => VIRTQ_DESC_F_NEXT,
};
let desc = Descriptor::new((0x1000 * (i + 1)) as u64, 0x1000, flags, i + 1);
vq.desc_table().store(i, desc);
}
vq.avail().ring().ref_at(0).store(u16::to_le(0));
vq.avail().ring().ref_at(1).store(u16::to_le(2));
vq.avail().ring().ref_at(2).store(u16::to_le(5));
// Let the device know it can consume chains with the index < 2.
vq.avail().idx().store(u16::to_le(3));
// No descriptor chains are consumed at this point.
assert_eq!(q.next_avail(), 0);
loop {
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// Here the device would consume entries from the available ring, add an entry in
// the used ring and optionally notify the driver. For the purpose of this test, we
// don't need to do anything with the chain, only consume it.
}
if !q.enable_notification().unwrap() {
break;
}
}
// The next chain that can be consumed should have index 3.
assert_eq!(q.next_avail(), 3);
assert_eq!(q.avail_idx(Ordering::Acquire).unwrap(), Wrapping(3));
assert_eq!(q.lock().ready(), true);
// Decrement `idx` which should be forbidden. We don't enforce this thing, but we should
// test that we don't panic in case the driver decrements it.
vq.avail().idx().store(u16::to_le(1));
loop {
q.disable_notification().unwrap();
while let Some(_chain) = q.iter().unwrap().next() {
// In a real use case, we would do something with the chain here.
}
if !q.enable_notification().unwrap() {
break;
}
}
}
}