1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
//! PID controllers.
//!
//! PID controllers are first created with [`PidController::new`]
//! and then can be utilized by calling [`PidController::update`] repeatedly.
use core::time::Duration;
/// A proportional–integral–derivative controller.
///
/// This controller is used to smoothly move motors to a certain point,
/// and allows for feedback-based power adjustments. This is desirable
/// over just setting the motor power, as it can be tuned to make the
/// motor stop in exactly the right position without overshooting.
#[derive(Debug, Clone, Copy)]
pub struct PidController {
/// Proportional constant. This is multiplied by the error to get the
/// proportional component of the output.
pub kp: f32,
/// Integral constant. This accounts for the past values of the error.
pub ki: f32,
/// Derivative constant. This allows you to change the motor behavior
/// based on the rate of change of the error (predicting future values).
pub kd: f32,
last_time: vexide_core::time::Instant,
last_position: f32,
i: f32,
}
impl PidController {
/// Create a new PID controller with the given constants.
pub fn new(kp: f32, ki: f32, kd: f32) -> Self {
Self {
kp,
ki,
kd,
last_time: vexide_core::time::Instant::now(),
last_position: 0.0,
i: 0.0,
}
}
/// Update the PID controller with the current setpoint and position.
pub fn update(&mut self, setpoint: f32, position: f32) -> f32 {
let mut delta_time = self.last_time.elapsed();
if delta_time.is_zero() {
delta_time += Duration::from_micros(1);
}
let error = setpoint - position;
self.i += error * delta_time.as_secs_f32();
let p = self.kp * error;
let i = self.ki * self.i;
let mut d = (position - self.last_position) / delta_time.as_secs_f32();
if d.is_nan() {
d = 0.0
}
let output = p + i + d;
self.last_position = position;
self.last_time = vexide_core::time::Instant::now();
output
}
}