1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
//! Simple feedforward controller for motors.
//! Computes the voltage to maintain an idealized DC motor in a certain state.
//! Uses this feedforward model: V = Kₛ sign(ω) + Kᵥ ω + Kₐ α
/// Feedforward controller for motor control.
///
/// This controller is used to apply feedforward control to achieve desired motor behavior
/// based on velocity and acceleration.
#[derive(Debug, Clone)]
pub struct MotorFeedforwardController {
/// Feedforward constant for static friction compensation.
pub ks: f32,
/// Feedforward constant for velocity compensation.
pub kv: f32,
/// Feedforward constant for acceleration compensation.
pub ka: f32,
/// Feedforward constant for the target acceleration.
pub target_acceleration: f32,
/// Target.
pub target: f32,
}
impl MotorFeedforwardController {
/// Creates a new [`MotorFeedforwardController`] with the given constants and target.
///
/// # Arguments
///
/// * `ks` - Feedforward constant for static friction compensation.
/// * `kv` - Feedforward constant for velocity compensation.
/// * `ka` - Feedforward constant for acceleration compensation.
/// * `target_acceleration` - Feedforward constant for the target acceleration.
///
/// # Returns
///
/// A new [`MotorFeedforwardController`].
pub const fn new(ks: f32, kv: f32, ka: f32, target_acceleration: f32) -> Self {
Self {
ks,
kv,
ka,
target_acceleration,
target: 0.0,
}
}
/// Calculates the control output.
///
/// # Arguments
///
/// * `target_acceleration` - The target_acceleration of the system.
/// * `target` - Target.
///
/// # Returns
///
/// The control output to apply to the motor.
pub fn calculate(&self, target: f32, target_acceleration: f32) -> f32 {
// Calculate the feedforward component based on velocity and acceleration
self.ks * num::signum(target) + self.kv * target + self.ka * target_acceleration
}
}