vexide_core/float/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//! Floating Point Numbers
//!
//! This module provides implementations of math functions of floating point
//! primitive types (`f32`, `f64`).

#[cfg(all(target_vendor = "vex", not(feature = "force_rust_libm")))]
mod newlib;

#[cfg(any(not(target_vendor = "vex"), feature = "force_rust_libm"))]
mod rust;

/// Used to make [`powi_impl`] generic across f32 and f64.
pub(crate) trait One {
    const ONE: Self;
}

impl One for f64 {
    const ONE: Self = 1.0;
}

impl One for f32 {
    const ONE: Self = 1.0;
}

/// Implementation of an integer power function using exponentiation by squaring.
///
/// Adapted from <https://github.com/rust-num/num-traits/blob/7ec3d41d39b28190ec1d42db38021107b3951f3a/src/pow.rs#L23>
#[inline]
pub(crate) fn powi_impl<T: One + Copy + core::ops::Mul<T, Output = T>>(
    mut base: T,
    mut exp: usize,
) -> T {
    if exp == 0 {
        return T::ONE;
    }

    while exp & 1 == 0 {
        base = base * base;
        exp >>= 1;
    }
    if exp == 1 {
        return base;
    }

    let mut acc = base;
    while exp > 1 {
        exp >>= 1;
        base = base * base;
        if exp & 1 == 1 {
            acc = acc * base;
        }
    }
    acc
}

/// Floating-point math functions
///
/// This extension trait defines the missing implementations of floating point
/// math in `core` present in rust's `std` crate.
pub trait Float: Sized {
    /// Returns the largest integer less than or equal to `self`.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn floor(self) -> Self;

    /// Returns the smallest integer greater than or equal to `self`.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn ceil(self) -> Self;

    /// Returns the nearest integer to `self`. If a value is half-way between two
    /// integers, round away from `0.0`.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn round(self) -> Self;

    /// Returns the nearest integer to a number. Rounds half-way cases to the number
    /// with an even least significant digit.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn round_ties_even(self) -> Self;

    /// Returns the integer part of `self`.
    /// This means that non-integer numbers are always truncated towards zero.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn trunc(self) -> Self;

    /// Returns the fractional part of `self`.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn fract(self) -> Self;

    /// Computes the absolute value of `self`.
    ///
    /// This function always returns the precise result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn abs(self) -> Self;

    /// Returns a number that represents the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// - NaN if the number is NaN
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn signum(self) -> Self;

    /// Returns a number composed of the magnitude of `self` and the sign of
    /// `sign`.
    ///
    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
    /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of
    /// `sign` is returned. Note, however, that conserving the sign bit on NaN
    /// across arithmetical operations is not generally guaranteed.
    /// See [explanation of NaN as a special value](primitive@f32) for more info.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn copysign(self, sign: Self) -> Self;

    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
    /// error, yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
    /// the target architecture has a dedicated `fma` CPU instruction. However,
    /// this is not always true, and will be heavily dependant on designing
    /// algorithms with specific target hardware in mind.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn mul_add(self, a: Self, b: Self) -> Self;

    /// Calculates Euclidean division, the matching method for `rem_euclid`.
    ///
    /// This computes the integer `n` such that
    /// `self = n * rhs + self.rem_euclid(rhs)`.
    /// In other words, the result is `self / rhs` rounded to the integer `n`
    /// such that `self >= n * rhs`.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn div_euclid(self, rhs: Self) -> Self;

    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
    ///
    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
    /// most cases. However, due to a floating point round-off error it can
    /// result in `r == rhs.abs()`, violating the mathematical definition, if
    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
    /// This result is not an element of the function's codomain, but it is the
    /// closest floating point number in the real numbers and thus fulfills the
    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
    /// approximately.
    ///
    /// # Precision
    ///
    /// The result of this operation is guaranteed to be the rounded
    /// infinite-precision result.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn rem_euclid(self, rhs: Self) -> Self;

    /// Raises a number to an integer power.
    ///
    /// Using this function is generally faster than using `powf`.
    /// It might have a different sequence of rounding operations than `powf`,
    /// so the results are not guaranteed to agree.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn powi(self, n: i32) -> Self;

    /// Raises a number to a floating point power.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn powf(self, n: Self) -> Self;

    /// Returns the square root of a number.
    ///
    /// Returns NaN if `self` is a negative number other than `-0.0`.
    ///
    /// # Precision
    ///
    /// The result of this operation is guaranteed to be the rounded
    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
    /// and guaranteed not to change.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn sqrt(self) -> Self;

    /// Returns `e^(self)`, (the exponential function).
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn exp(self) -> Self;

    /// Returns `2^(self)`.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn exp2(self) -> Self;

    /// Returns the natural logarithm of the number.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn ln(self) -> Self;

    /// Returns the logarithm of the number with respect to an arbitrary base.
    ///
    /// The result might not be correctly rounded owing to implementation details;
    /// `self.log2()` can produce more accurate results for base 2, and
    /// `self.log10()` can produce more accurate results for base 10.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn log(self, base: Self) -> Self;

    /// Returns the base 2 logarithm of the number.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn log2(self) -> Self;

    /// Returns the base 10 logarithm of the number.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn log10(self) -> Self;

    /// The positive difference of two numbers.
    ///
    /// * If `self <= other`: `0.0`
    /// * Else: `self - other`
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    /// This function currently corresponds to the `fdim` function from libm.
    #[deprecated(
        since = "0.2.0",
        note = "you probably meant `(self - other).abs()`: \
                this operation is `(self - other).max(0.0)` \
                except that `abs_sub` also propagates NaNs (also \
                known as `fdim` in C). If you truly need the positive \
                difference, consider using that expression or the C function \
                `fdim`, depending on how you wish to handle NaN."
    )]
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn abs_sub(self, other: Self) -> Self;

    /// Returns the cube root of a number.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn cbrt(self) -> Self;

    /// Compute the distance between the origin and a point (`x`, `y`) on the
    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
    /// right-angle triangle with other sides having length `x.abs()` and
    /// `y.abs()`.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn hypot(self, other: Self) -> Self;

    /// Computes the sine of a number (in radians).
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn sin(self) -> Self;

    /// Computes the cosine of a number (in radians).
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn cos(self) -> Self;

    /// Computes the tangent of a number (in radians).
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn tan(self) -> Self;

    /// Computes the arcsine of a number. Return value is in radians in
    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn asin(self) -> Self;

    /// Computes the arccosine of a number. Return value is in radians in
    /// the range [0, pi] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn acos(self) -> Self;

    /// Computes the arctangent of a number. Return value is in radians in the
    /// range [-pi/2, pi/2];
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn atan(self) -> Self;

    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn atan2(self, other: Self) -> Self;

    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
    /// `(sin(x), cos(x))`.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn sin_cos(self) -> (Self, Self);

    /// Returns `e^(self) - 1` in a way that is accurate even if the
    /// number is close to zero.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn exp_m1(self) -> Self;

    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
    /// the operations were performed separately.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn ln_1p(self) -> Self;

    /// Hyperbolic sine function.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn sinh(self) -> Self;

    /// Hyperbolic cosine function.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn cosh(self) -> Self;

    /// Hyperbolic tangent function.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn tanh(self) -> Self;

    /// Inverse hyperbolic sine function.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn asinh(self) -> Self;

    /// Inverse hyperbolic cosine function.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn acosh(self) -> Self;

    /// Inverse hyperbolic tangent function.
    ///
    /// # Platform-specific precision
    ///
    /// The precision of this function varies by platform and Rust version.
    #[must_use = "method returns a new number and does not mutate the original value"]
    fn atanh(self) -> Self;
}