1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
// Copyright 2022 the Vello Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT

#![warn(clippy::doc_markdown, clippy::semicolon_if_nothing_returned)]

//! Vello is an experimental 2d graphics rendering engine written in Rust, using [`wgpu`].
//! It efficiently draws large 2d scenes with interactive or near-interactive performance.
//!
//! ![image](https://github.com/linebender/vello/assets/8573618/cc2b742e-2135-4b70-8051-c49aeddb5d19)
//!
//!
//! ## Motivation
//!
//! Vello is meant to fill the same place in the graphics stack as other vector graphics renderers like [Skia](https://skia.org/), [Cairo](https://www.cairographics.org/), and its predecessor project [Piet](https://www.cairographics.org/).
//! On a basic level, that means it provides tools to render shapes, images, gradients, texts, etc, using a PostScript-inspired API, the same that powers SVG files and [the browser `<canvas>` element](https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D).
//!
//! Vello's selling point is that it gets better performance than other renderers by better leveraging the GPU.
//! In traditional PostScript-style renderers, some steps of the render process like sorting and clipping either need to be handled in the CPU or done through the use of intermediary textures.
//! Vello avoids this by using prefix-scan algorithms to parallelize work that usually needs to happen in sequence, so that work can be offloaded to the GPU with minimal use of temporary buffers.
//!
//! This means that Vello needs a GPU with support for compute shaders to run.
//!
//!
//! ## Getting started
//!
//! Vello is meant to be integrated deep in UI render stacks.
//! While drawing in a Vello scene is easy, actually rendering that scene to a surface setting up a wgpu context, which is a non-trivial task.
//!
//! To use Vello as the renderer for your PDF reader / GUI toolkit / etc, your code will have to look roughly like this:
//!
//! ```ignore
//! // Initialize wgpu and get handles
//! let (width, height) = ...;
//! let device: wgpu::Device = ...;
//! let queue: wgpu::Queue = ...;
//! let surface: wgpu::Surface<'_> = ...;
//! let texture_format: wgpu::TextureFormat = ...;
//! let mut renderer = Renderer::new(
//!    &device,
//!    RendererOptions {
//!       surface_format: Some(texture_format),
//!       use_cpu: false,
//!       antialiasing_support: vello::AaSupport::all(),
//!       num_init_threads: NonZeroUsize::new(1),
//!    },
//! ).expect("Failed to create renderer");
//!
//! // Create scene and draw stuff in it
//! let mut scene = vello::Scene::new();
//! scene.fill(
//!    vello::peniko::Fill::NonZero,
//!    vello::Affine::IDENTITY,
//!    vello::Color::rgb8(242, 140, 168),
//!    None,
//!    &vello::Circle::new((420.0, 200.0), 120.0),
//! );
//!
//! // Draw more stuff
//! scene.push_layer(...);
//! scene.fill(...);
//! scene.stroke(...);
//! scene.pop_layer(...);
//!
//! // Render to your window/buffer/etc.
//! let surface_texture = surface.get_current_texture()
//!    .expect("failed to get surface texture");
//! renderer
//!    .render_to_surface(
//!       &device,
//!       &queue,
//!       &scene,
//!       &surface_texture,
//!       &vello::RenderParams {
//!          base_color: Color::BLACK, // Background color
//!          width,
//!          height,
//!          antialiasing_method: AaConfig::Msaa16,
//!       },
//!    )
//!    .expect("Failed to render to surface");
//! surface_texture.present();
//! ```
//!
//! See the [`examples/`](https://github.com/linebender/vello/tree/main/examples) folder to see how that code integrates with frameworks like winit and bevy.

mod cpu_dispatch;
mod cpu_shader;
mod recording;
mod render;
mod scene;
mod shaders;
#[cfg(feature = "wgpu")]
mod wgpu_engine;

use std::num::NonZeroUsize;

/// Styling and composition primitives.
pub use peniko;
/// 2D geometry, with a focus on curves.
pub use peniko::kurbo;

#[doc(hidden)]
pub use skrifa;

pub mod glyph;

#[cfg(feature = "wgpu")]
pub mod util;

pub use render::Render;
pub use scene::{DrawGlyphs, Scene};
#[cfg(feature = "wgpu")]
pub use util::block_on_wgpu;

pub use recording::{
    BufferProxy, Command, ImageFormat, ImageProxy, Recording, ResourceId, ResourceProxy, ShaderId,
};
pub use shaders::FullShaders;
#[cfg(feature = "wgpu")]
use wgpu_engine::{ExternalResource, WgpuEngine};

/// Temporary export, used in `with_winit` for stats
pub use vello_encoding::BumpAllocators;
#[cfg(feature = "wgpu")]
use wgpu::{Device, Queue, SurfaceTexture, TextureFormat, TextureView};
#[cfg(feature = "wgpu-profiler")]
use wgpu_profiler::{GpuProfiler, GpuProfilerSettings};

/// Catch-all error type.
pub type Error = Box<dyn std::error::Error>;

/// Specialization of `Result` for our catch-all error type.
pub type Result<T> = std::result::Result<T, Error>;

/// Represents the antialiasing method to use during a render pass.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum AaConfig {
    Area,
    Msaa8,
    Msaa16,
}

/// Represents the set of antialiasing configurations to enable during pipeline creation.
pub struct AaSupport {
    pub area: bool,
    pub msaa8: bool,
    pub msaa16: bool,
}

impl AaSupport {
    pub fn all() -> Self {
        Self {
            area: true,
            msaa8: true,
            msaa16: true,
        }
    }

    pub fn area_only() -> Self {
        Self {
            area: true,
            msaa8: false,
            msaa16: false,
        }
    }
}

/// Renders a scene into a texture or surface.
#[cfg(feature = "wgpu")]
pub struct Renderer {
    #[cfg_attr(not(feature = "hot_reload"), allow(dead_code))]
    options: RendererOptions,
    engine: WgpuEngine,
    shaders: FullShaders,
    blit: Option<BlitPipeline>,
    target: Option<TargetTexture>,
    #[cfg(feature = "wgpu-profiler")]
    pub profiler: GpuProfiler,
    #[cfg(feature = "wgpu-profiler")]
    pub profile_result: Option<Vec<wgpu_profiler::GpuTimerQueryResult>>,
}

/// Parameters used in a single render that are configurable by the client.
pub struct RenderParams {
    /// The background color applied to the target. This value is only applicable to the full
    /// pipeline.
    pub base_color: peniko::Color,

    /// Dimensions of the rasterization target
    pub width: u32,
    pub height: u32,

    /// The anti-aliasing algorithm. The selected algorithm must have been initialized while
    /// constructing the `Renderer`.
    pub antialiasing_method: AaConfig,
}

#[cfg(feature = "wgpu")]
pub struct RendererOptions {
    /// The format of the texture used for surfaces with this renderer/device
    /// If None, the renderer cannot be used with surfaces
    pub surface_format: Option<TextureFormat>,

    /// If true, run all stages up to fine rasterization on the CPU.
    // TODO: Consider evolving this so that the CPU stages can be configured dynamically via
    // `RenderParams`.
    pub use_cpu: bool,

    /// Represents the enabled set of AA configurations. This will be used to determine which
    /// pipeline permutations should be compiled at startup.
    pub antialiasing_support: AaSupport,

    /// How many threads to use for initialisation of shaders.
    ///
    /// Use `Some(1)` to use a single thread. This is recommended when on macOS
    /// (see <https://github.com/bevyengine/bevy/pull/10812#discussion_r1496138004>)
    ///
    /// Set to `None` to use a heuristic which will use many but not all threads
    ///
    /// Has no effect on WebAssembly
    pub num_init_threads: Option<NonZeroUsize>,
}

#[cfg(feature = "wgpu")]
impl Renderer {
    /// Creates a new renderer for the specified device.
    pub fn new(device: &Device, options: RendererOptions) -> Result<Self> {
        let mut engine = WgpuEngine::new(options.use_cpu);
        // If we are running in parallel (i.e. the number of threads is not 1)
        if options.num_init_threads != NonZeroUsize::new(1) {
            #[cfg(not(target_arch = "wasm32"))]
            engine.use_parallel_initialisation();
        }
        let shaders = shaders::full_shaders(device, &mut engine, &options)?;
        #[cfg(not(target_arch = "wasm32"))]
        engine.build_shaders_if_needed(device, options.num_init_threads);
        let blit = options
            .surface_format
            .map(|surface_format| BlitPipeline::new(device, surface_format));

        Ok(Self {
            options,
            engine,
            shaders,
            blit,
            target: None,
            // Use 3 pending frames
            #[cfg(feature = "wgpu-profiler")]
            profiler: GpuProfiler::new(GpuProfilerSettings {
                ..Default::default()
            })?,
            #[cfg(feature = "wgpu-profiler")]
            profile_result: None,
        })
    }

    /// Renders a scene to the target texture.
    ///
    /// The texture is assumed to be of the specified dimensions and have been created with
    /// the [`wgpu::TextureFormat::Rgba8Unorm`] format and the [`wgpu::TextureUsages::STORAGE_BINDING`]
    /// flag set.
    pub fn render_to_texture(
        &mut self,
        device: &Device,
        queue: &Queue,
        scene: &Scene,
        texture: &TextureView,
        params: &RenderParams,
    ) -> Result<()> {
        let (recording, target) = render::render_full(scene, &self.shaders, params);
        let external_resources = [ExternalResource::Image(
            *target.as_image().unwrap(),
            texture,
        )];
        self.engine.run_recording(
            device,
            queue,
            &recording,
            &external_resources,
            "render_to_texture",
            #[cfg(feature = "wgpu-profiler")]
            &mut self.profiler,
        )?;
        Ok(())
    }

    /// Renders a scene to the target surface.
    ///
    /// This renders to an intermediate texture and then runs a render pass to blit to the
    /// specified surface texture.
    ///
    /// The surface is assumed to be of the specified dimensions and have been configured with
    /// the same format passed in the constructing [`RendererOptions`]' `surface_format`.
    /// Panics if `surface_format` was `None`
    pub fn render_to_surface(
        &mut self,
        device: &Device,
        queue: &Queue,
        scene: &Scene,
        surface: &SurfaceTexture,
        params: &RenderParams,
    ) -> Result<()> {
        let width = params.width;
        let height = params.height;
        let mut target = self
            .target
            .take()
            .unwrap_or_else(|| TargetTexture::new(device, width, height));
        // TODO: implement clever resizing semantics here to avoid thrashing the memory allocator
        // during resize, specifically on metal.
        if target.width != width || target.height != height {
            target = TargetTexture::new(device, width, height);
        }
        self.render_to_texture(device, queue, scene, &target.view, params)?;
        let blit = self
            .blit
            .as_ref()
            .expect("renderer should have configured surface_format to use on a surface");
        let mut encoder =
            device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
        {
            let surface_view = surface
                .texture
                .create_view(&wgpu::TextureViewDescriptor::default());
            let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
                label: None,
                layout: &blit.bind_layout,
                entries: &[wgpu::BindGroupEntry {
                    binding: 0,
                    resource: wgpu::BindingResource::TextureView(&target.view),
                }],
            });
            let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
                label: None,
                color_attachments: &[Some(wgpu::RenderPassColorAttachment {
                    view: &surface_view,
                    resolve_target: None,
                    ops: wgpu::Operations {
                        load: wgpu::LoadOp::Clear(wgpu::Color::default()),
                        store: wgpu::StoreOp::Store,
                    },
                })],
                depth_stencil_attachment: None,
                occlusion_query_set: None,
                timestamp_writes: None,
            });
            render_pass.set_pipeline(&blit.pipeline);
            render_pass.set_bind_group(0, &bind_group, &[]);
            render_pass.draw(0..6, 0..1);
        }
        queue.submit(Some(encoder.finish()));
        self.target = Some(target);
        Ok(())
    }

    /// Reload the shaders. This should only be used during `vello` development
    #[cfg(feature = "hot_reload")]
    pub async fn reload_shaders(&mut self, device: &Device) -> Result<()> {
        device.push_error_scope(wgpu::ErrorFilter::Validation);
        let mut engine = WgpuEngine::new(self.options.use_cpu);
        // We choose not to initialise these shaders in parallel, to ensure the error scope works correctly
        let shaders = shaders::full_shaders(device, &mut engine, &self.options)?;
        let error = device.pop_error_scope().await;
        if let Some(error) = error {
            return Err(error.into());
        }
        self.engine = engine;
        self.shaders = shaders;
        Ok(())
    }

    /// Renders a scene to the target texture.
    ///
    /// The texture is assumed to be of the specified dimensions and have been created with
    /// the [`wgpu::TextureFormat::Rgba8Unorm`] format and the [`wgpu::TextureUsages::STORAGE_BINDING`]
    /// flag set.
    ///
    /// The return value is the value of the `BumpAllocators` in this rendering, which is currently used
    /// for debug output.
    ///
    /// This return type is not stable, and will likely be changed when a more principled way to access
    /// relevant statistics is implemented
    pub async fn render_to_texture_async(
        &mut self,
        device: &Device,
        queue: &Queue,
        scene: &Scene,
        texture: &TextureView,
        params: &RenderParams,
    ) -> Result<Option<BumpAllocators>> {
        let mut render = Render::new();
        let encoding = scene.encoding();
        // TODO: turn this on; the download feature interacts with CPU dispatch
        let robust = false;
        let recording = render.render_encoding_coarse(encoding, &self.shaders, params, robust);
        let target = render.out_image();
        let bump_buf = render.bump_buf();
        self.engine.run_recording(
            device,
            queue,
            &recording,
            &[],
            "t_async_coarse",
            #[cfg(feature = "wgpu-profiler")]
            &mut self.profiler,
        )?;

        let mut bump: Option<BumpAllocators> = None;
        if let Some(bump_buf) = self.engine.get_download(bump_buf) {
            let buf_slice = bump_buf.slice(..);
            let (sender, receiver) = futures_intrusive::channel::shared::oneshot_channel();
            buf_slice.map_async(wgpu::MapMode::Read, move |v| sender.send(v).unwrap());
            if let Some(recv_result) = receiver.receive().await {
                recv_result?;
            } else {
                return Err("channel was closed".into());
            }
            let mapped = buf_slice.get_mapped_range();
            bump = Some(bytemuck::pod_read_unaligned(&mapped));
        }
        // TODO: apply logic to determine whether we need to rerun coarse, and also
        // allocate the blend stack as needed.
        self.engine.free_download(bump_buf);
        // Maybe clear to reuse allocation?
        let mut recording = Recording::default();
        render.record_fine(&self.shaders, &mut recording);
        let external_resources = [ExternalResource::Image(target, texture)];
        self.engine.run_recording(
            device,
            queue,
            &recording,
            &external_resources,
            "t_async_fine",
            #[cfg(feature = "wgpu-profiler")]
            &mut self.profiler,
        )?;
        Ok(bump)
    }

    /// See [`Self::render_to_surface`]
    pub async fn render_to_surface_async(
        &mut self,
        device: &Device,
        queue: &Queue,
        scene: &Scene,
        surface: &SurfaceTexture,
        params: &RenderParams,
    ) -> Result<Option<BumpAllocators>> {
        let width = params.width;
        let height = params.height;
        let mut target = self
            .target
            .take()
            .unwrap_or_else(|| TargetTexture::new(device, width, height));
        // TODO: implement clever resizing semantics here to avoid thrashing the memory allocator
        // during resize, specifically on metal.
        if target.width != width || target.height != height {
            target = TargetTexture::new(device, width, height);
        }
        let bump = self
            .render_to_texture_async(device, queue, scene, &target.view, params)
            .await?;
        let blit = self
            .blit
            .as_ref()
            .expect("renderer should have configured surface_format to use on a surface");
        let mut encoder =
            device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
        {
            let surface_view = surface
                .texture
                .create_view(&wgpu::TextureViewDescriptor::default());
            let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
                label: None,
                layout: &blit.bind_layout,
                entries: &[wgpu::BindGroupEntry {
                    binding: 0,
                    resource: wgpu::BindingResource::TextureView(&target.view),
                }],
            });
            let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
                label: None,
                color_attachments: &[Some(wgpu::RenderPassColorAttachment {
                    view: &surface_view,
                    resolve_target: None,
                    ops: wgpu::Operations {
                        load: wgpu::LoadOp::Clear(wgpu::Color::default()),
                        store: wgpu::StoreOp::Store,
                    },
                })],
                depth_stencil_attachment: None,
                timestamp_writes: None,
                occlusion_query_set: None,
            });
            render_pass.set_pipeline(&blit.pipeline);
            render_pass.set_bind_group(0, &bind_group, &[]);
            render_pass.draw(0..6, 0..1);
        }
        #[cfg(feature = "wgpu-profiler")]
        self.profiler.resolve_queries(&mut encoder);
        queue.submit(Some(encoder.finish()));
        self.target = Some(target);
        #[cfg(feature = "wgpu-profiler")]
        self.profiler.end_frame().unwrap();
        #[cfg(feature = "wgpu-profiler")]
        if let Some(result) = self
            .profiler
            .process_finished_frame(queue.get_timestamp_period())
        {
            self.profile_result = Some(result);
        }
        Ok(bump)
    }
}

#[cfg(feature = "wgpu")]
struct TargetTexture {
    view: TextureView,
    width: u32,
    height: u32,
}

#[cfg(feature = "wgpu")]
impl TargetTexture {
    pub fn new(device: &Device, width: u32, height: u32) -> Self {
        let texture = device.create_texture(&wgpu::TextureDescriptor {
            label: None,
            size: wgpu::Extent3d {
                width,
                height,
                depth_or_array_layers: 1,
            },
            mip_level_count: 1,
            sample_count: 1,
            dimension: wgpu::TextureDimension::D2,
            usage: wgpu::TextureUsages::STORAGE_BINDING | wgpu::TextureUsages::TEXTURE_BINDING,
            format: wgpu::TextureFormat::Rgba8Unorm,
            view_formats: &[],
        });
        let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
        Self {
            view,
            width,
            height,
        }
    }
}

#[cfg(feature = "wgpu")]
struct BlitPipeline {
    bind_layout: wgpu::BindGroupLayout,
    pipeline: wgpu::RenderPipeline,
}

#[cfg(feature = "wgpu")]
impl BlitPipeline {
    fn new(device: &Device, format: TextureFormat) -> Self {
        const SHADERS: &str = r#"
            @vertex
            fn vs_main(@builtin(vertex_index) ix: u32) -> @builtin(position) vec4<f32> {
                // Generate a full screen quad in normalized device coordinates
                var vertex = vec2(-1.0, 1.0);
                switch ix {
                    case 1u: {
                        vertex = vec2(-1.0, -1.0);
                    }
                    case 2u, 4u: {
                        vertex = vec2(1.0, -1.0);
                    }
                    case 5u: {
                        vertex = vec2(1.0, 1.0);
                    }
                    default: {}
                }
                return vec4(vertex, 0.0, 1.0);
            }

            @group(0) @binding(0)
            var fine_output: texture_2d<f32>;

            @fragment
            fn fs_main(@builtin(position) pos: vec4<f32>) -> @location(0) vec4<f32> {
                let rgba_sep = textureLoad(fine_output, vec2<i32>(pos.xy), 0);
                return vec4(rgba_sep.rgb * rgba_sep.a, rgba_sep.a);
            }
        "#;

        let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
            label: Some("blit shaders"),
            source: wgpu::ShaderSource::Wgsl(SHADERS.into()),
        });
        let bind_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
            label: None,
            entries: &[wgpu::BindGroupLayoutEntry {
                visibility: wgpu::ShaderStages::FRAGMENT,
                binding: 0,
                ty: wgpu::BindingType::Texture {
                    sample_type: wgpu::TextureSampleType::Float { filterable: true },
                    view_dimension: wgpu::TextureViewDimension::D2,
                    multisampled: false,
                },
                count: None,
            }],
        });
        let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
            label: None,
            bind_group_layouts: &[&bind_layout],
            push_constant_ranges: &[],
        });
        let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
            label: None,
            layout: Some(&pipeline_layout),
            vertex: wgpu::VertexState {
                module: &shader,
                entry_point: "vs_main",
                buffers: &[],
            },
            fragment: Some(wgpu::FragmentState {
                module: &shader,
                entry_point: "fs_main",
                targets: &[Some(wgpu::ColorTargetState {
                    format,
                    blend: None,
                    write_mask: wgpu::ColorWrites::ALL,
                })],
            }),
            primitive: wgpu::PrimitiveState {
                topology: wgpu::PrimitiveTopology::TriangleList,
                strip_index_format: None,
                front_face: wgpu::FrontFace::Ccw,
                cull_mode: Some(wgpu::Face::Back),
                polygon_mode: wgpu::PolygonMode::Fill,
                unclipped_depth: false,
                conservative: false,
            },
            depth_stencil: None,
            multisample: wgpu::MultisampleState {
                count: 1,
                mask: !0,
                alpha_to_coverage_enabled: false,
            },
            multiview: None,
        });
        Self {
            bind_layout,
            pipeline,
        }
    }
}