Expand description
§VelesDB Core
High-performance vector database engine written in Rust.
VelesDB is a local-first vector database designed for semantic search,
recommendation systems, and RAG (Retrieval-Augmented Generation) applications.
§Features
- Blazing Fast: HNSW index with SIMD-optimized distance calculations
- Persistent Storage: Memory-mapped files for efficient disk access
- Simple API: Easy-to-use interface for vector operations
§Quick Start
ⓘ
use velesdb_core::{Database, Collection, DistanceMetric};
// Create a new database
let db = Database::open("./data")?;
// Create a collection
let collection = db.create_collection("documents", 768, DistanceMetric::Cosine)?;
// Insert vectors
collection.upsert(vec![
Point::new(1, vec![0.1, 0.2, ...], json!({"title": "Hello World"})),
])?;
// Search for similar vectors
let results = collection.search(&query_vector, 10)?;Re-exports§
pub use index::HnswIndex;pub use index::HnswParams;pub use index::SearchQuality;pub use index::VectorIndex;pub use collection::Collection;pub use distance::DistanceMetric;pub use error::Error;pub use error::Result;pub use filter::Condition;pub use filter::Filter;pub use point::Point;pub use quantization::BinaryQuantizedVector;pub use quantization::QuantizedVector;pub use quantization::StorageMode;pub use column_store::ColumnStore;pub use column_store::ColumnType;pub use column_store::ColumnValue;pub use column_store::StringId;pub use column_store::StringTable;pub use column_store::TypedColumn;
Modules§
- collection
- Collection management for
VelesDB. - column_
store - Column-oriented storage for high-performance metadata filtering.
- distance
- Distance metrics for vector similarity calculations.
- error
- Error types for
VelesDB. - filter
- Metadata filtering for vector search.
- half_
precision - Half-precision floating point support for memory-efficient vector storage.
- index
- Index implementations for efficient vector search.
- point
- Point data structure representing a vector with metadata.
- quantization
- Scalar Quantization (SQ8) for memory-efficient vector storage.
- simd
- SIMD-optimized vector operations for high-performance distance calculations.
- simd_
avx512 - Enhanced SIMD operations with runtime CPU detection and optimized processing.
- simd_
explicit - Explicit SIMD optimizations using the
widecrate for portable vectorization. - storage
- Storage backends for persistent vector storage.
- velesql
VelesQL- SQL-like query language forVelesDB.
Structs§
- Database
- Database instance managing collections and storage.