Crate velesdb_core

Crate velesdb_core 

Source
Expand description

§VelesDB Core

High-performance vector database engine written in Rust.

VelesDB is a local-first vector database designed for semantic search, recommendation systems, and RAG (Retrieval-Augmented Generation) applications.

§Features

  • Blazing Fast: HNSW index with explicit SIMD (4x faster)
  • 5 Distance Metrics: Cosine, Euclidean, Dot Product, Hamming, Jaccard
  • Hybrid Search: Vector + BM25 full-text with RRF fusion
  • Quantization: SQ8 (4x) and Binary (32x) memory compression
  • Persistent Storage: Memory-mapped files for efficient disk access

§Quick Start

use velesdb_core::{Database, DistanceMetric, Point, StorageMode};
use serde_json::json;

// Create a new database
let db = Database::open("./data")?;

// Create a collection (all 5 metrics available)
db.create_collection("documents", 768, DistanceMetric::Cosine)?;
// Or with quantization: DistanceMetric::Hamming + StorageMode::Binary

let collection = db.get_collection("documents").unwrap();

// Insert vectors (upsert takes ownership)
collection.upsert(vec![
    Point::new(1, vec![0.1; 768], Some(json!({"title": "Hello World"}))),
])?;

// Search for similar vectors
let results = collection.search(&query_vector, 10)?;

// Hybrid search (vector + text)
let hybrid = collection.hybrid_search(&query_vector, "hello", 5, Some(0.7))?;

Re-exports§

pub use index::HnswIndex;
pub use index::HnswParams;
pub use index::SearchQuality;
pub use index::VectorIndex;
pub use collection::Collection;
pub use collection::CollectionType;
pub use distance::DistanceMetric;
pub use error::Error;
pub use error::Result;
pub use filter::Condition;
pub use filter::Filter;
pub use point::Point;
pub use point::SearchResult;
pub use quantization::cosine_similarity_quantized;
pub use quantization::cosine_similarity_quantized_simd;
pub use quantization::dot_product_quantized;
pub use quantization::dot_product_quantized_simd;
pub use quantization::euclidean_squared_quantized;
pub use quantization::euclidean_squared_quantized_simd;
pub use quantization::BinaryQuantizedVector;
pub use quantization::QuantizedVector;
pub use quantization::StorageMode;
pub use column_store::ColumnStore;
pub use column_store::ColumnType;
pub use column_store::ColumnValue;
pub use column_store::StringId;
pub use column_store::StringTable;
pub use column_store::TypedColumn;
pub use config::ConfigError;
pub use config::HnswConfig;
pub use config::LimitsConfig;
pub use config::LoggingConfig;
pub use config::QuantizationConfig;
pub use config::SearchConfig;
pub use config::SearchMode;
pub use config::ServerConfig;
pub use config::StorageConfig;
pub use config::VelesConfig;
pub use fusion::FusionError;
pub use fusion::FusionStrategy;
pub use metrics::average_metrics;
pub use metrics::compute_latency_percentiles;
pub use metrics::hit_rate;
pub use metrics::mean_average_precision;
pub use metrics::mrr;
pub use metrics::ndcg_at_k;
pub use metrics::precision_at_k;
pub use metrics::recall_at_k;
pub use metrics::LatencyStats;

Modules§

alloc_guard
RAII guards for safe manual memory management.
cache
Caching layer for VelesDB (SOTA 2026).
collection
Collection management for VelesDB.
column_store
Column-oriented storage for high-performance metadata filtering.
compression
Column compression for VelesDB (SOTA 2026).
config
VelesDB Configuration Module
distance
Distance metrics for vector similarity calculations.
error
Error types for VelesDB.
filter
Metadata filtering for vector search.
fusion
Multi-query fusion strategies for VelesDB.
gpu
GPU-accelerated vector operations using wgpu (WebGPU).
half_precision
Half-precision floating point support for memory-efficient vector storage.
index
Index implementations for efficient vector search.
metrics
Search quality metrics for evaluating retrieval performance.
perf_optimizations
Performance optimizations module for ultra-fast vector operations.
point
Point data structure representing a vector with metadata.
quantization
Scalar Quantization (SQ8) for memory-efficient vector storage.
simd
SIMD-optimized vector operations for high-performance distance calculations.
simd_avx512
Enhanced SIMD operations with runtime CPU detection and optimized processing.
simd_dispatch
Zero-overhead SIMD function dispatch using OnceLock.
simd_explicit
Explicit SIMD optimizations using the wide crate for portable vectorization.
simd_native
Native SIMD intrinsics for maximum performance.
storage
Storage backends for persistent vector storage.
vector_ref
Zero-copy vector reference abstraction.
velesql
VelesQL - SQL-like query language for VelesDB.

Structs§

Database
Database instance managing collections and storage.