[][src]Struct vek::mat::repr_c::row_major::mat2::Mat2

#[repr(C)]
pub struct Mat2<T> {
    pub rows: CVec2<Vec2<T>>,
}

2x2 matrix.

Fields

rows: CVec2<Vec2<T>>

Methods

impl<T> Mat2<T>[src]

pub fn identity() -> Self where
    T: Zero + One
[src]

The identity matrix, which is also the default value for square matrices.

assert_eq!(Mat4::<f32>::default(), Mat4::<f32>::identity());

pub fn zero() -> Self where
    T: Zero
[src]

The matrix with all elements set to zero.

pub fn apply<F>(&mut self, f: F) where
    T: Copy,
    F: FnMut(T) -> T, 
[src]

Applies the function f to each element of this matrix, in-place.

For an example, see the map() method.

pub fn apply2<F, S>(&mut self, other: Mat2<S>, f: F) where
    T: Copy,
    F: FnMut(T, S) -> T, 
[src]

Applies the function f to each element of this matrix, in-place.

For an example, see the map2() method.

pub fn numcast<D>(self) -> Option<Mat2<D>> where
    T: NumCast,
    D: NumCast
[src]

Returns a memberwise-converted copy of this matrix, using NumCast.

let m = Mat4::<f32>::identity();
let m: Mat4<i32> = m.numcast().unwrap();
assert_eq!(m, Mat4::identity());

pub fn broadcast_diagonal(val: T) -> Self where
    T: Zero + Copy
[src]

Initializes a new matrix with elements of the diagonal set to val and the other to zero.

In a way, this is the same as single-argument matrix constructors in GLSL and GLM.

assert_eq!(Mat4::broadcast_diagonal(0), Mat4::zero());
assert_eq!(Mat4::broadcast_diagonal(1), Mat4::identity());
assert_eq!(Mat4::broadcast_diagonal(2), Mat4::new(
    2,0,0,0,
    0,2,0,0,
    0,0,2,0,
    0,0,0,2,
));

pub fn with_diagonal(d: Vec2<T>) -> Self where
    T: Zero + Copy
[src]

Initializes a matrix by its diagonal, setting other elements to zero.

pub fn diagonal(self) -> Vec2<T>[src]

Gets the matrix's diagonal into a vector.

assert_eq!(Mat4::<u32>::zero().diagonal(), Vec4::zero());
assert_eq!(Mat4::<u32>::identity().diagonal(), Vec4::one());

let mut m = Mat4::zero();
m[(0, 0)] = 1;
m[(1, 1)] = 2;
m[(2, 2)] = 3;
m[(3, 3)] = 4;
assert_eq!(m.diagonal(), Vec4::new(1, 2, 3, 4));
assert_eq!(m.diagonal(), Vec4::iota() + 1);

pub fn trace(self) -> T where
    T: Sum
[src]

The sum of the diagonal's elements.

assert_eq!(Mat4::<u32>::zero().trace(), 0);
assert_eq!(Mat4::<u32>::identity().trace(), 4);

pub fn mul_memberwise(self, m: Self) -> Self where
    T: Mul<Output = T>, 
[src]

Multiply elements of this matrix with another's.


let m = Mat4::new(
    0, 1, 2, 3,
    1, 2, 3, 4,
    2, 3, 4, 5,
    3, 4, 5, 6,
);
let r = Mat4::new(
    0, 1, 4, 9,
    1, 4, 9, 16,
    4, 9, 16, 25,
    9, 16, 25, 36,
);
assert_eq!(m.mul_memberwise(m), r);

pub fn row_count(&self) -> usize[src]

Convenience for getting the number of rows of this matrix.

pub fn col_count(&self) -> usize[src]

Convenience for getting the number of columns of this matrix.

pub const ROW_COUNT: usize[src]

Convenience constant representing the number of rows for matrices of this type.

pub const COL_COUNT: usize[src]

Convenience constant representing the number of columns for matrices of this type.

pub fn is_packed(&self) -> bool[src]

Are all elements of this matrix tightly packed together in memory ?

This might not be the case for matrices in the repr_simd module (it depends on the target architecture).

impl<T> Mat2<T>[src]

pub fn map_rows<D, F>(self, f: F) -> Mat2<D> where
    F: FnMut(Vec2<T>) -> Vec2<D>, 
[src]

Returns a row-wise-converted copy of this matrix, using the given conversion closure.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<f32>::new(
    0.25, 1.25, 5.56, 8.66,
    8.53, 2.92, 3.86, 9.36,
    1.02, 0.28, 5.52, 6.06,
    6.20, 7.01, 4.90, 5.26
);
let m = m.map_rows(|row| row.map(|x| x.round() as i32));
assert_eq!(m, Mat4::new(
    0, 1, 6, 9,
    9, 3, 4, 9,
    1, 0, 6, 6,
    6, 7, 5, 5
));

pub fn into_row_array(self) -> [T; 4][src]

Converts this matrix into a fixed-size array of elements.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
];
assert_eq!(m.into_row_array(), array);

pub fn into_row_arrays(self) -> [[T; 2]; 2][src]

Converts this matrix into a fixed-size array of fixed-size arrays of elements.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [  0,  1,  2,  3, ],
    [  4,  5,  6,  7, ],
    [  8,  9, 10, 11, ],
    [ 12, 13, 14, 15, ],
];
assert_eq!(m.into_row_arrays(), array);

pub fn from_row_array(array: [T; 4]) -> Self[src]

Converts a fixed-size array of elements into a matrix.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
];
assert_eq!(m, Mat4::from_row_array(array));

pub fn from_row_arrays(array: [[T; 2]; 2]) -> Self[src]

Converts a fixed-size array of fixed-size array of elements into a matrix.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [  0,  1,  2,  3, ],
    [  4,  5,  6,  7, ],
    [  8,  9, 10, 11, ],
    [ 12, 13, 14, 15, ],
];
assert_eq!(m, Mat4::from_row_arrays(array));

pub fn into_col_array(self) -> [T; 4][src]

Converts this matrix into a fixed-size array of elements.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    0, 4, 8, 12,
    1, 5, 9, 13,
    2, 6, 10, 14,
    3, 7, 11, 15
];
assert_eq!(m.into_col_array(), array);

pub fn into_col_arrays(self) -> [[T; 2]; 2][src]

Converts this matrix into a fixed-size array of fixed-size arrays of elements.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [ 0, 4,  8, 12, ],
    [ 1, 5,  9, 13, ],
    [ 2, 6, 10, 14, ],
    [ 3, 7, 11, 15, ],
];
assert_eq!(m.into_col_arrays(), array);

pub fn from_col_array(array: [T; 4]) -> Self[src]

Converts a fixed-size array of elements into a matrix.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    0, 4, 8, 12,
    1, 5, 9, 13,
    2, 6, 10, 14,
    3, 7, 11, 15
];
assert_eq!(m, Mat4::from_col_array(array));

pub fn from_col_arrays(array: [[T; 2]; 2]) -> Self[src]

Converts a fixed-size array of fixed-size arrays of elements into a matrix.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<u32>::new(
     0,  1,  2,  3,
     4,  5,  6,  7,
     8,  9, 10, 11,
    12, 13, 14, 15
);
let array = [
    [ 0, 4,  8, 12, ],
    [ 1, 5,  9, 13, ],
    [ 2, 6, 10, 14, ],
    [ 3, 7, 11, 15, ],
];
assert_eq!(m, Mat4::from_col_arrays(array));

pub fn as_row_ptr(&self) -> *const T[src]

Gets a const pointer to this matrix's elements.

Panics

Panics if the matrix's elements are not tightly packed in memory, which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.

pub fn as_mut_row_ptr(&mut self) -> *mut T[src]

Gets a mut pointer to this matrix's elements.

Panics

Panics if the matrix's elements are not tightly packed in memory, which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.

pub fn as_row_slice(&self) -> &[T][src]

View this matrix as an immutable slice.

Panics

Panics if the matrix's elements are not tightly packed in memory, which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.

pub fn as_mut_row_slice(&mut self) -> &mut [T][src]

View this matrix as a mutable slice.

Panics

Panics if the matrix's elements are not tightly packed in memory, which may be the case for matrices in the repr_simd module.
You may check this with the is_packed() method.

impl<T> Mat2<T>[src]

pub fn gl_should_transpose(&self) -> bool[src]

Gets the transpose parameter to pass to OpenGL glUniformMatrix*() functions.

The return value is a plain bool which you may directly cast to a GLboolean.

This takes &self to prevent surprises when changing the type of matrix you plan to send.

pub const GL_SHOULD_TRANSPOSE: bool[src]

The transpose parameter to pass to OpenGL glUniformMatrix*() functions.

impl<T> Mat2<T>[src]

pub fn map<D, F>(self, f: F) -> Mat2<D> where
    F: FnMut(T) -> D, 
[src]

Returns an element-wise-converted copy of this matrix, using the given conversion closure.

use vek::mat::repr_c::row_major::Mat4;

let m = Mat4::<f32>::new(
    0.25, 1.25, 5.56, 8.66,
    8.53, 2.92, 3.86, 9.36,
    1.02, 0.28, 5.52, 6.06,
    6.20, 7.01, 4.90, 5.26
);
let m = m.map(|x| x.round() as i32);
assert_eq!(m, Mat4::new(
    0, 1, 6, 9,
    9, 3, 4, 9,
    1, 0, 6, 6,
    6, 7, 5, 5
));

pub fn map2<D, F, S>(self, other: Mat2<S>, f: F) -> Mat2<D> where
    F: FnMut(T, S) -> D, 
[src]

Applies the function f to each element of two matrices, pairwise, and returns the result.

use vek::mat::repr_c::row_major::Mat4;

let a = Mat4::<f32>::new(
    0.25, 1.25, 2.52, 2.99,
    0.25, 1.25, 2.52, 2.99,
    0.25, 1.25, 2.52, 2.99,
    0.25, 1.25, 2.52, 2.99
);
let b = Mat4::<i32>::new(
    0, 1, 0, 0,
    1, 0, 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 1
);
let m = a.map2(b, |a, b| a.round() as i32 + b);
assert_eq!(m, Mat4::new(
    0, 2, 3, 3,
    1, 1, 3, 3,
    0, 1, 4, 3,
    0, 1, 3, 4
));

pub fn transposed(self) -> Self[src]

The matrix's transpose.


let m = Mat2::new(
    0, 1,
    4, 5
);
let t = Mat2::new(
    0, 4,
    1, 5
);
assert_eq!(m.transposed(), t);
assert_eq!(m, m.transposed().transposed());

pub fn transpose(&mut self)[src]

Transpose this matrix.


let mut m = Mat2::new(
    0, 1,
    4, 5
);
let t = Mat2::new(
    0, 4,
    1, 5
);
m.transpose();
assert_eq!(m, t);

pub fn determinant(self) -> T where
    T: Mul<T, Output = T> + Sub<T, Output = T>, 
[src]

Get this matrix's determinant.

A matrix is invertible if its determinant is non-zero.

let (a,b,c,d) = (0,1,2,3);
let m = Mat2::new(a,b,c,d);
assert_eq!(m.determinant(), a*d - c*b);

pub fn rotate_z(&mut self, angle_radians: T) where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Rotates this matrix around the Z axis (counter-clockwise rotation in 2D).

pub fn rotated_z(self, angle_radians: T) -> Self where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Rotates this matrix around the Z axis (counter-clockwise rotation in 2D).

pub fn rotation_z(angle_radians: T) -> Self where
    T: Real
[src]

Creates a matrix that rotates around the Z axis (counter-clockwise rotation in 2D).

pub fn scale_2d<V: Into<Vec2<T>>>(&mut self, v: V) where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Scales this matrix in 2D.

pub fn scaled_2d<V: Into<Vec2<T>>>(self, v: V) -> Self where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Returns this matrix scaled in 2D.

pub fn scaling_2d<V: Into<Vec2<T>>>(v: V) -> Self where
    T: Zero
[src]

Creates a 2D scaling matrix.

pub fn shear_x(&mut self, k: T) where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Shears this matrix along the X axis.

pub fn sheared_x(self, k: T) -> Self where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Returns this matrix sheared along the X axis.

pub fn shearing_x(k: T) -> Self where
    T: Zero + One
[src]

Creates a 2D shearing matrix along the X axis.

pub fn shear_y(&mut self, k: T) where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Shears this matrix along the Y axis.

pub fn sheared_y(self, k: T) -> Self where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

Returns this matrix sheared along the Y axis.

pub fn shearing_y(k: T) -> Self where
    T: Zero + One
[src]

Creates a 2D shearing matrix along the Y axis.

impl<T> Mat2<T>[src]

pub fn new(m00: T, m01: T, m10: T, m11: T) -> Self[src]

Creates a new 2x2 matrix from elements in a layout-agnostic way.

The parameters are named mij where i is the row index and j the column index. Their order is always the same regardless of the matrix's layout.

Trait Implementations

impl<T> Add<Mat2<T>> for Mat2<T> where
    T: Add<Output = T>, 
[src]

type Output = Self

The resulting type after applying the + operator.

impl<T> Add<T> for Mat2<T> where
    T: Copy + Add<Output = T>, 
[src]

type Output = Self

The resulting type after applying the + operator.

impl<T: Add<Output = T> + Copy> AddAssign<Mat2<T>> for Mat2<T>[src]

impl<T: Add<Output = T> + Copy> AddAssign<T> for Mat2<T>[src]

impl<T: ApproxEq> ApproxEq for Mat2<T> where
    T::Epsilon: Copy
[src]

type Epsilon = T::Epsilon

Used for specifying relative comparisons.

impl<T: Clone> Clone for Mat2<T>[src]

impl<T: Copy> Copy for Mat2<T>[src]

impl<T: Debug> Debug for Mat2<T>[src]

impl<T: Zero + One> Default for Mat2<T>[src]

The default value for a square matrix is the identity.

assert_eq!(Mat4::<f32>::default(), Mat4::<f32>::identity());

impl<T: Display> Display for Mat2<T>[src]

Displays this matrix using the following format:

(i being the number of rows and j the number of columns)

( m00 ... m0j
  ... ... ...
  mi0 ... mij )

Note that elements are not comma-separated.
This format doesn't depend on the matrix's storage layout.

impl<T> Div<Mat2<T>> for Mat2<T> where
    T: Div<Output = T>, 
[src]

type Output = Self

The resulting type after applying the / operator.

impl<T> Div<T> for Mat2<T> where
    T: Copy + Div<Output = T>, 
[src]

type Output = Self

The resulting type after applying the / operator.

impl<T: Div<Output = T> + Copy> DivAssign<Mat2<T>> for Mat2<T>[src]

impl<T: Div<Output = T> + Copy> DivAssign<T> for Mat2<T>[src]

impl<T: Eq> Eq for Mat2<T>[src]

impl<T> From<Mat2<T>> for Mat2<T>[src]

impl<T> From<Mat2<T>> for Mat4<T> where
    T: Zero + One
[src]

impl<T> From<Mat2<T>> for Mat3<T> where
    T: Zero + One
[src]

impl<T> From<Mat2<T>> for Mat2<T>[src]

impl<T> From<Mat3<T>> for Mat2<T>[src]

impl<T> From<Mat4<T>> for Mat2<T>[src]

impl<T: Hash> Hash for Mat2<T>[src]

impl<T> Index<(usize, usize)> for Mat2<T>[src]

Index this matrix in a layout-agnostic way with an (i, j) (row index, column index) tuple.

Matrices cannot be indexed by Vec2s because that would be likely to cause confusion: should x be the row index (because it's the first element) or the column index (because it's a horizontal position) ?

type Output = T

The returned type after indexing.

impl<T> IndexMut<(usize, usize)> for Mat2<T>[src]

impl<T> Mul<CubicBezier2<T>> for Rows2<T> where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

type Output = CubicBezier2<T>

The resulting type after applying the * operator.

impl<T: MulAdd<T, T, Output = T> + Mul<Output = T> + Copy> Mul<Mat2<T>> for Mat2<T>[src]

Multiplies a column-major matrix with a row-major matrix.

use vek::mat::row_major::Mat4 as Rows4;
use vek::mat::column_major::Mat4 as Cols4;

let m = Cols4::<u32>::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let b = Rows4::from(m);
let r = Rows4::<u32>::new(
    26, 32, 18, 24,
    82, 104, 66, 88,
    38, 56, 74, 92,
    54, 68, 42, 56
);
assert_eq!(m * b, r);
assert_eq!(m * Rows4::<u32>::identity(), m.into());
assert_eq!(Cols4::<u32>::identity() * b, m.into());

type Output = Transpose<T>

The resulting type after applying the * operator.

impl<T: MulAdd<T, T, Output = T> + Mul<Output = T> + Copy> Mul<Mat2<T>> for Vec2<T>[src]

Multiplies a row vector with a row-major matrix, giving a row vector.

With SIMD vectors, this is the most efficient way.

use vek::mat::row_major::Mat4;
use vek::vec::Vec4;

let m = Mat4::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(26, 32, 18, 24);
assert_eq!(v * m, r);

type Output = Self

The resulting type after applying the * operator.

impl<T: MulAdd<T, T, Output = T> + Mul<Output = T> + Copy> Mul<Mat2<T>> for Mat2<T>[src]

Multiplies a row-major matrix with another.

use vek::mat::row_major::Mat4;

let m = Mat4::<u32>::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let r = Mat4::<u32>::new(
    26, 32, 18, 24,
    82, 104, 66, 88,
    38, 56, 74, 92,
    54, 68, 42, 56
);
assert_eq!(m * m, r);
assert_eq!(m, m * Mat4::<u32>::identity());
assert_eq!(m, Mat4::<u32>::identity() * m);

type Output = Self

The resulting type after applying the * operator.

impl<T: MulAdd<T, T, Output = T> + Mul<Output = T> + Copy> Mul<Mat2<T>> for Mat2<T>[src]

Multiplies a row-major matrix with a column-major matrix, producing a column-major matrix.

use vek::mat::row_major::Mat4 as Rows4;
use vek::mat::column_major::Mat4 as Cols4;

let m = Rows4::<u32>::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let b = Cols4::from(m);
let r = Cols4::<u32>::new(
    26, 32, 18, 24,
    82, 104, 66, 88,
    38, 56, 74, 92,
    54, 68, 42, 56
);
assert_eq!(m * b, r);
assert_eq!(m * Cols4::<u32>::identity(), m.into());
assert_eq!(Rows4::<u32>::identity() * b, m.into());

type Output = Transpose<T>

The resulting type after applying the * operator.

impl<T> Mul<QuadraticBezier2<T>> for Rows2<T> where
    T: Real + MulAdd<T, T, Output = T>, 
[src]

type Output = QuadraticBezier2<T>

The resulting type after applying the * operator.

impl<T> Mul<T> for Mat2<T> where
    T: Copy + Zero + Add<Output = T> + Mul<Output = T>, 
[src]

type Output = Self

The resulting type after applying the * operator.

impl<T: MulAdd<T, T, Output = T> + Mul<Output = T> + Copy> Mul<Vec2<T>> for Mat2<T>[src]

Multiplies a row-major matrix with a column vector, giving a column vector.

use vek::mat::row_major::Mat4;
use vek::vec::Vec4;

let m = Mat4::new(
    0, 1, 2, 3,
    4, 5, 6, 7,
    8, 9, 0, 1,
    2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(14, 38, 12, 26);
assert_eq!(m * v, r);

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> MulAssign<Mat2<T>> for Mat2<T> where
    T: Copy + Zero + Add<Output = T> + Mul<Output = T> + MulAdd<T, T, Output = T>, 
[src]

impl<T> MulAssign<T> for Mat2<T> where
    T: Copy + Zero + Add<Output = T> + Mul<Output = T>, 
[src]

impl<T> Neg for Mat2<T> where
    T: Neg<Output = T>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<T: Zero + One + Copy + MulAdd<T, T, Output = T>> One for Mat2<T>[src]

impl<T: PartialEq> PartialEq<Mat2<T>> for Mat2<T>[src]

impl<T> Rem<Mat2<T>> for Mat2<T> where
    T: Rem<Output = T>, 
[src]

type Output = Self

The resulting type after applying the % operator.

impl<T> Rem<T> for Mat2<T> where
    T: Copy + Rem<Output = T>, 
[src]

type Output = Self

The resulting type after applying the % operator.

impl<T: Rem<Output = T> + Copy> RemAssign<Mat2<T>> for Mat2<T>[src]

impl<T: Rem<Output = T> + Copy> RemAssign<T> for Mat2<T>[src]

impl<T> StructuralEq for Mat2<T>[src]

impl<T> StructuralPartialEq for Mat2<T>[src]

impl<T> Sub<Mat2<T>> for Mat2<T> where
    T: Sub<Output = T>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<T> Sub<T> for Mat2<T> where
    T: Copy + Sub<Output = T>, 
[src]

type Output = Self

The resulting type after applying the - operator.

impl<T: Sub<Output = T> + Copy> SubAssign<Mat2<T>> for Mat2<T>[src]

impl<T: Sub<Output = T> + Copy> SubAssign<T> for Mat2<T>[src]

impl<T: Zero + PartialEq> Zero for Mat2<T>[src]

Auto Trait Implementations

impl<T> RefUnwindSafe for Mat2<T> where
    T: RefUnwindSafe

impl<T> Send for Mat2<T> where
    T: Send

impl<T> Sync for Mat2<T> where
    T: Sync

impl<T> Unpin for Mat2<T> where
    T: Unpin

impl<T> UnwindSafe for Mat2<T> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, Rhs> NumAssignOps<Rhs> for T where
    T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>, 
[src]

impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
    T: Sub<Rhs, Output = Output> + Mul<Rhs, Output = Output> + Div<Rhs, Output = Output> + Add<Rhs, Output = Output> + Rem<Rhs, Output = Output>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.