1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
use super::*;

use std::io;
use std::path::Path;

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

#[macro_export]
macro_rules! assert_err {
    ($ex:expr) => {
        if let Ok(v) = $ex {
            panic!("assertion failed, expected Err(..), got {:?}", v);
        }
    };
}

#[macro_export]
macro_rules! io_error_other {
    ($msg:expr) => {
        io::Error::new(io::ErrorKind::Other, $msg.to_string())
    };
}

pub fn to_io_error_other<E: std::error::Error + Send + Sync + 'static>(x: E) -> io::Error {
    io::Error::new(io::ErrorKind::Other, x)
}

#[macro_export]
macro_rules! bail_io_error_other {
    ($msg:expr) => {
        return io::Result::Err(io::Error::new(io::ErrorKind::Other, $msg.to_string()))
    };
}

cfg_if::cfg_if! {
    if #[cfg(feature="rt-tokio")] {
        #[macro_export]
        macro_rules! asyncmutex_try_lock {
            ($x:expr) => {
                $x.try_lock().ok()
            };
        }

        #[macro_export]
        macro_rules! asyncmutex_lock_arc {
            ($x:expr) => {
                $x.clone().lock_owned().await
            };
        }
    } else {
        #[macro_export]
        macro_rules! asyncmutex_try_lock {
            ($x:expr) => {
                $x.try_lock()
            };
        }
        #[macro_export]
        macro_rules! asyncmutex_lock_arc {
            ($x:expr) => {
                $x.lock_arc().await
            };
        }
    }
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

pub fn system_boxed<'a, Out>(
    future: impl Future<Output = Out> + Send + 'a,
) -> SendPinBoxFutureLifetime<'a, Out> {
    Box::pin(future)
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

cfg_if! {
    if #[cfg(target_arch = "wasm32")] {

        // xxx: for now until wasm threads are more stable, and/or we bother with web workers
        pub fn get_concurrency() -> u32 {
            1
        }

    } else {

        pub fn get_concurrency() -> u32 {
            std::thread::available_parallelism()
                .map(|x| x.get())
                .unwrap_or_else(|e| {
                    warn!("unable to get concurrency defaulting to single core: {}", e);
                    1
                }) as u32
        }

    }
}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

pub fn split_port(name: &str) -> Result<(String, Option<u16>), String> {
    if let Some(split) = name.rfind(':') {
        let hoststr = &name[0..split];
        let portstr = &name[split + 1..];
        let port: u16 = portstr
            .parse::<u16>()
            .map_err(|e| format!("invalid port: {}", e))?;

        Ok((hoststr.to_string(), Some(port)))
    } else {
        Ok((name.to_string(), None))
    }
}

pub fn prepend_slash(s: String) -> String {
    if s.starts_with('/') {
        return s;
    }
    let mut out = "/".to_owned();
    out.push_str(s.as_str());
    out
}

pub fn timestamp_to_secs(ts: u64) -> f64 {
    ts as f64 / 1000000.0f64
}

pub fn secs_to_timestamp(secs: f64) -> u64 {
    (secs * 1000000.0f64) as u64
}

pub fn ms_to_us(ms: u32) -> u64 {
    (ms as u64) * 1000u64
}

pub fn us_to_ms(us: u64) -> Result<u32, String> {
    u32::try_from(us / 1000u64).map_err(|e| format!("could not convert microseconds: {}", e))
}

// Calculate retry attempt with logarhythmic falloff
pub fn retry_falloff_log(
    last_us: u64,
    cur_us: u64,
    interval_start_us: u64,
    interval_max_us: u64,
    interval_multiplier_us: f64,
) -> bool {
    //
    if cur_us < interval_start_us {
        // Don't require a retry within the first 'interval_start_us' microseconds of the reliable time period
        false
    } else if cur_us >= last_us + interval_max_us {
        // Retry at least every 'interval_max_us' microseconds
        true
    } else {
        // Exponential falloff between 'interval_start_us' and 'interval_max_us' microseconds
        last_us <= secs_to_timestamp(timestamp_to_secs(cur_us) / interval_multiplier_us)
    }
}

pub fn try_at_most_n_things<T, I, C, R>(max: usize, things: I, closure: C) -> Option<R>
where
    I: IntoIterator<Item = T>,
    C: Fn(T) -> Option<R>,
{
    let mut fails = 0usize;
    for thing in things.into_iter() {
        if let Some(r) = closure(thing) {
            return Some(r);
        }
        fails += 1;
        if fails >= max {
            break;
        }
    }
    None
}

pub async fn async_try_at_most_n_things<T, I, C, R, F>(
    max: usize,
    things: I,
    closure: C,
) -> Option<R>
where
    I: IntoIterator<Item = T>,
    C: Fn(T) -> F,
    F: Future<Output = Option<R>>,
{
    let mut fails = 0usize;
    for thing in things.into_iter() {
        if let Some(r) = closure(thing).await {
            return Some(r);
        }
        fails += 1;
        if fails >= max {
            break;
        }
    }
    None
}

pub trait CmpAssign {
    fn min_assign(&mut self, other: Self);
    fn max_assign(&mut self, other: Self);
}

impl<T> CmpAssign for T
where
    T: core::cmp::Ord,
{
    fn min_assign(&mut self, other: Self) {
        if &other < self {
            *self = other;
        }
    }
    fn max_assign(&mut self, other: Self) {
        if &other > self {
            *self = other;
        }
    }
}

pub fn compatible_unspecified_socket_addr(socket_addr: &SocketAddr) -> SocketAddr {
    match socket_addr {
        SocketAddr::V4(_) => SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), 0),
        SocketAddr::V6(_) => SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), 0),
    }
}

pub fn listen_address_to_socket_addrs(listen_address: &str) -> Result<Vec<SocketAddr>, String> {
    // If no address is specified, but the port is, use ipv4 and ipv6 unspecified
    // If the address is specified, only use the specified port and fail otherwise
    let ip_addrs = vec![
        IpAddr::V4(Ipv4Addr::UNSPECIFIED),
        IpAddr::V6(Ipv6Addr::UNSPECIFIED),
    ];

    Ok(if let Some(portstr) = listen_address.strip_prefix(':') {
        let port = portstr
            .parse::<u16>()
            .map_err(|e| format!("Invalid port format in udp listen address: {}", e))?;
        ip_addrs.iter().map(|a| SocketAddr::new(*a, port)).collect()
    } else if let Ok(port) = listen_address.parse::<u16>() {
        ip_addrs.iter().map(|a| SocketAddr::new(*a, port)).collect()
    } else {
        cfg_if! {
            if #[cfg(target_arch = "wasm32")] {
                use core::str::FromStr;
                vec![SocketAddr::from_str(listen_address).map_err(|e| format!("Unable to parse address: {}",e))?]
            } else {
                listen_address
                    .to_socket_addrs()
                    .map_err(|e| format!("Unable to resolve address: {}", e))?
                    .collect()
            }
        }
    })
}

pub trait Dedup<T: PartialEq + Clone> {
    fn remove_duplicates(&mut self);
}

impl<T: PartialEq + Clone> Dedup<T> for Vec<T> {
    fn remove_duplicates(&mut self) {
        let mut already_seen = Vec::new();
        self.retain(|item| match already_seen.contains(item) {
            true => false,
            _ => {
                already_seen.push(item.clone());
                true
            }
        })
    }
}

cfg_if::cfg_if! {
    if #[cfg(unix)] {
        use std::os::unix::fs::MetadataExt;
        use std::os::unix::prelude::PermissionsExt;
        use nix::unistd::{Uid, Gid};

        pub fn ensure_file_private_owner<P:AsRef<Path>>(path: P) -> Result<(), String>
        {
            let path = path.as_ref();
            if !path.exists() {
                return Ok(());
            }

            let uid = Uid::effective();
            let gid = Gid::effective();
            let meta = std::fs::metadata(path).map_err(|e| format!("unable to get metadata for path: {}", e))?;

            if meta.mode() != 0o600 {
                std::fs::set_permissions(path,std::fs::Permissions::from_mode(0o600)).map_err(|e| format!("unable to set correct permissions on path: {}", e))?;
            }
            if meta.uid() != uid.as_raw() || meta.gid() != gid.as_raw() {
                return Err("path has incorrect owner/group".to_owned());
            }
            Ok(())
        }
    } else if #[cfg(windows)] {
        //use std::os::windows::fs::MetadataExt;
        //use windows_permissions::*;

        pub fn ensure_file_private_owner<P:AsRef<Path>>(path: P) -> Result<(), String>
        {
            let path = path.as_ref();
            if !path.exists() {
                return Ok(());
            }

            Ok(())
        }
    } else {
        pub fn ensure_file_private_owner<P:AsRef<Path>>(_path: P) -> Result<(), String>
        {
            Ok(())
        }
    }
}

#[repr(C, align(8))]
struct AlignToEight([u8; 8]);

pub unsafe fn aligned_8_u8_vec_uninit(n_bytes: usize) -> Vec<u8> {
    let n_units = (n_bytes + mem::size_of::<AlignToEight>() - 1) / mem::size_of::<AlignToEight>();
    let mut aligned: Vec<AlignToEight> = Vec::with_capacity(n_units);
    let ptr = aligned.as_mut_ptr();
    let cap_units = aligned.capacity();
    mem::forget(aligned);

    Vec::from_raw_parts(
        ptr as *mut u8,
        n_bytes,
        cap_units * mem::size_of::<AlignToEight>(),
    )
}

pub unsafe fn unaligned_u8_vec_uninit(n_bytes: usize) -> Vec<u8> {
    let mut unaligned: Vec<u8> = Vec::with_capacity(n_bytes);
    let ptr = unaligned.as_mut_ptr();
    mem::forget(unaligned);

    Vec::from_raw_parts(ptr as *mut u8, n_bytes, n_bytes)
}

pub fn debug_backtrace() -> String {
    let bt = backtrace::Backtrace::new();
    format!("{:?}", bt)
}

pub fn debug_print_backtrace() {
    if is_debug_backtrace_enabled() {
        debug!("{}", debug_backtrace());
    }
}

pub fn is_debug_backtrace_enabled() -> bool {
    cfg_if! {
        if #[cfg(debug_assertions)] {
            cfg_if! {
                if #[cfg(target_arch = "wasm32")] {
                    let rbenv = get_wasm_global_string_value("RUST_BACKTRACE").unwrap_or_default();
                }
                else
                {
                    let rbenv = std::env::var("RUST_BACKTRACE").unwrap_or_default();
                }
            }
            rbenv == "1" || rbenv == "full"
        } else {
            false
        }
    }
}

pub fn type_name_of_val<T: ?Sized>(_val: &T) -> &'static str {
    std::any::type_name::<T>()
}