1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
use crate::expression::column_usage::{ColumnUsage, DatasetsColumnUsage, VlSelectionFields};
use crate::spec::transform::{TransformColumns, TransformSpecTrait};
use crate::task_graph::graph::ScopedVariable;
use crate::task_graph::scope::TaskScope;
use serde::{Deserialize, Serialize};
use serde_json::Value;
use std::collections::HashMap;
use vegafusion_common::escape::unescape_field;

#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct ExtentTransformSpec {
    pub field: String, // TODO: support field object

    #[serde(skip_serializing_if = "Option::is_none")]
    pub signal: Option<String>,

    #[serde(flatten)]
    pub extra: HashMap<String, Value>,
}

impl TransformSpecTrait for ExtentTransformSpec {
    fn output_signals(&self) -> Vec<String> {
        self.signal.clone().into_iter().collect()
    }

    fn transform_columns(
        &self,
        datum_var: &Option<ScopedVariable>,
        _usage_scope: &[u32],
        _task_scope: &TaskScope,
        _vl_selection_fields: &VlSelectionFields,
    ) -> TransformColumns {
        if let Some(datum_var) = datum_var {
            let usage = DatasetsColumnUsage::empty().with_column_usage(
                datum_var,
                ColumnUsage::empty().with_column(&unescape_field(&self.field)),
            );
            TransformColumns::PassThrough {
                usage,
                produced: ColumnUsage::empty(),
            }
        } else {
            TransformColumns::Unknown
        }
    }

    fn local_datetime_columns_produced(
        &self,
        input_local_datetime_columns: &[String],
    ) -> Vec<String> {
        // Keep input local datetime columns as extent passes through all input columns
        // and doesn't create an columns
        Vec::from(input_local_datetime_columns)
    }
}