1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! Vectorized math expression parser/evaluator.
//!
//! # Why?
//!
//! Performance. Evaluation of math expressions involving many variables can
//! incur significant overhead from traversing the expression tree or performing
//! variable lookups. We amortize that cost by performing intermediate
//! operations on _vectors_ of input data at a time (with optional data
//! parallelism via the `rayon` feature).
//!
//! # Example
//!
//! ```rust
//! use vector_expr::*;
//!
//! fn binding_map(var_name: &str) -> BindingId {
//!     match var_name {
//!         "bar" => 0,
//!         "baz" => 1,
//!         "foo" => 2,
//!         _ => unreachable!(),
//!     }
//! }
//! let parsed = Expression::parse("2 * (foo + bar) * baz", binding_map).unwrap();
//! let real = parsed.unwrap_real();
//!
//! let bar = [1.0, 2.0, 3.0];
//! let baz = [4.0, 5.0, 6.0];
//! let foo = [7.0, 8.0, 9.0];
//! let bindings: &[&[f64]] = &[&bar, &baz, &foo];
//! let mut registers = Registers::new(3);
//! let output = real.evaluate(bindings, &mut registers);
//! assert_eq!(&output, &[64.0, 100.0, 144.0]);
//! ```

mod evaluate;
mod expression;
mod parse;

/// Uses the [`pest`] parsing expression grammar language.
///
/// ```text
#[doc = include_str!("grammar.pest")]
/// ```
pub mod grammar_doc {}

pub use evaluate::*;
pub use expression::*;
pub use parse::ParseError;

/// Pass to `Expression::parse` if the expression has no variables.
pub fn empty_binding_map(_var_name: &str) -> BindingId {
    panic!("Empty binding map")
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn real_expression() {
        fn binding_map(var_name: &str) -> BindingId {
            match var_name {
                "bar" => 0,
                "baz" => 1,
                "foo" => 2,
                _ => unreachable!(),
            }
        }
        let parsed = Expression::parse("2 * (foo + bar) * -baz", binding_map).unwrap();
        let real = parsed.unwrap_real();

        let bar = [1.0, 2.0, 3.0];
        let baz = [4.0, 5.0, 6.0];
        let foo = [7.0, 8.0, 9.0];
        let bindings = &[bar, baz, foo];
        let mut registers = Registers::new(3);
        let output = real.evaluate(bindings, &mut registers);
        assert_eq!(&output, &[-64.0, -100.0, -144.0]);
        assert_eq!(registers.num_allocations(), 3);
    }

    #[test]
    fn real_op_precedence() {
        let mut registers = Registers::new(1);

        let parsed = Expression::parse("1 * 2 + 3 * 4", empty_binding_map).unwrap();
        let real = parsed.unwrap_real();
        let output = real.evaluate_without_vars(&mut registers);
        assert_eq!(&output, &[14.0]);

        let parsed = Expression::parse("8 / 4 * 3", empty_binding_map).unwrap();
        let real = parsed.unwrap_real();
        let output = real.evaluate_without_vars(&mut registers);
        assert_eq!(&output, &[6.0]);

        let parsed = Expression::parse("4 ^ 3 ^ 2", empty_binding_map).unwrap();
        let real = parsed.unwrap_real();
        let output = real.evaluate_without_vars(&mut registers);
        assert_eq!(&output, &[262144.0]);
    }

    #[test]
    fn bool_expression_with_real_bindings() {
        fn binding_map(var_name: &str) -> BindingId {
            match var_name {
                "bar" => 0,
                "baz" => 1,
                "foo" => 2,
                _ => unreachable!(),
            }
        }
        let parsed = Expression::parse("!(bar < foo && bar < baz)", binding_map).unwrap();
        let bool = parsed.unwrap_bool();

        let bar = [1.0, 6.0, 7.0];
        let baz = [2.0, 5.0, 8.0];
        let foo = [3.0, 4.0, 9.0];
        let bindings = &[bar, baz, foo];
        let mut registers = Registers::new(3);
        let output = bool.evaluate::<_, [_; 0]>(bindings, &[], |_| unreachable!(), &mut registers);
        assert_eq!(&output, &[false, true, false]);
        assert_eq!(registers.num_allocations(), 3);
    }

    #[test]
    fn bool_expression_with_real_and_string_bindings() {
        fn binding_map(var_name: &str) -> BindingId {
            match var_name {
                "foo" => 0,
                "bar" => 0,
                _ => unreachable!(),
            }
        }
        let parsed = Expression::parse("foo == \"foo_123\" && bar > 2", binding_map).unwrap();
        let bool = parsed.unwrap_bool();

        fn string_literal_id(value: &str) -> StringId {
            match value {
                "foo_123" => 0,
                _ => unreachable!(),
            }
        }

        let foo = [0, 1, 0];
        let bar = [1.0, 2.0, 3.0];
        let real_bindings = &[bar];
        let string_bindings = &[foo];
        let mut registers = Registers::new(3);
        let output = bool.evaluate(
            real_bindings,
            string_bindings,
            string_literal_id,
            &mut registers,
        );
        assert_eq!(&output, &[false, false, true]);
        assert_eq!(registers.num_allocations(), 5);
    }

    #[test]
    fn naive_allocations_limited_by_recycling() {
        fn binding_map(var_name: &str) -> BindingId {
            match var_name {
                "bar" => 0,
                "baz" => 1,
                "foo" => 2,
                _ => unreachable!(),
            }
        }
        let parsed = Expression::parse(
            "foo + bar + baz + foo + bar + baz + foo + bar + baz",
            binding_map,
        )
        .unwrap();
        let real = parsed.unwrap_real();

        let bar = [1.0, 2.0, 3.0];
        let baz = [4.0, 5.0, 6.0];
        let foo = [7.0, 8.0, 9.0];
        let bindings = &[bar, baz, foo];
        let mut registers = Registers::new(3);
        let output = real.evaluate(bindings, &mut registers);
        assert_eq!(&output, &[36.0, 45.0, 54.0]);
        assert_eq!(registers.num_allocations(), 2);
    }

    #[test]
    fn real_bench() {
        fn binding_map(var_name: &str) -> BindingId {
            match var_name {
                "x" => 0,
                "y" => 1,
                "z" => 2,
                var => panic!("Unexpected variable: {var}"),
            }
        }
        let parsed = Expression::parse("(z + (z^2 - 4*x*y)^0.5) / (2*x)", binding_map).unwrap();
        let real = parsed.unwrap_real();

        const LEN: i32 = 10_000_000;
        let x: Vec<_> = (0..LEN).map(|i| i as f64).collect();
        let y: Vec<_> = (0..LEN).map(|i| (LEN - i) as f64).collect();
        let z: Vec<_> = (0..LEN).map(|i| ((LEN / 2) - i) as f64).collect();
        let bindings = &[x, y, z];

        let mut registers = Registers::new(LEN as usize);
        let start = std::time::Instant::now();
        let _output = real.evaluate(bindings, &mut registers);
        let elapsed = start.elapsed().as_millis();
        println!(
            "Took {elapsed} ms, {} ns per element",
            (1_000_000 * elapsed) / LEN as u128
        );
        assert_eq!(registers.num_allocations(), 3);
    }
}