1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
//! `VecSet` is a vector-based set implementation which retains the order of inserted elements.
mod impls;
mod iter;
#[cfg(feature = "serde")]
mod serde;
use super::{Entries, Slot, VecMap};
use alloc::vec::Vec;
use core::borrow::Borrow;
use core::cmp::Ordering;
use core::ops::RangeBounds;
pub use self::iter::*;
/// A vector-based set implementation which retains the order of inserted elements.
///
/// Internally it is represented as a `Vec<T>` to support keys that are neither `Hash` nor `Ord`.
#[derive(Clone, Debug)]
pub struct VecSet<T> {
base: VecMap<T, ()>,
}
impl<T> VecSet<T> {
/// Create a new set. (Does not allocate.)
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set: VecSet<&str> = VecSet::new();
/// ```
pub const fn new() -> Self {
VecSet {
base: VecMap::new(),
}
}
/// Create a new set with capacity for `capacity` key-value pairs. (Does not allocate if
/// `capacity` is zero.)
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set: VecSet<&str> = VecSet::with_capacity(10);
/// assert_eq!(set.len(), 0);
/// assert!(set.capacity() >= 10);
/// ```
pub fn with_capacity(capacity: usize) -> Self {
VecSet {
base: VecMap::with_capacity(capacity),
}
}
/// Returns the number of elements the set can hold without reallocating.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set: VecSet<&str> = VecSet::with_capacity(10);
/// assert_eq!(set.capacity(), 10);
/// ```
pub fn capacity(&self) -> usize {
self.base.capacity()
}
/// Returns the number of elements in the set, also referred to as its 'length'.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut a = VecSet::new();
/// assert_eq!(a.len(), 0);
/// a.insert(1);
/// assert_eq!(a.len(), 1);
/// ```
pub fn len(&self) -> usize {
self.base.len()
}
/// Returns `true` if the set contains no elements.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut a = VecSet::new();
/// assert!(a.is_empty());
/// a.insert(1);
/// assert!(!a.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.base.is_empty()
}
/// Clears the set, removing all elements.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut a = VecSet::new();
/// a.insert(1);
/// a.clear();
/// assert!(a.is_empty());
/// ```
pub fn clear(&mut self) {
self.base.clear();
}
/// Shortens the set, keeping the first `len` elements and dropping the rest.
///
/// If `len` is greater than the set's current length, this has no effect.
///
/// # Examples
///
/// Truncating a four element set to two elements:
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["a", "b", "c", "d"]);
/// set.truncate(2);
/// assert_eq!(set, VecSet::from(["a", "b"]));
/// ```
///
/// No truncation occurs when `len` is greater than the set's current length:
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["a", "b", "c", "d"]);
/// set.truncate(8);
/// assert_eq!(set, VecSet::from(["a", "b", "c", "d"]));
/// ```
pub fn truncate(&mut self, len: usize) {
self.base.truncate(len);
}
/// Reverses the order of entries in the set, in place.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter(["a", "b", "c"]);
/// set.reverse();
/// assert_eq!(set, VecSet::from_iter(["c", "b", "a"]));
/// ```
pub fn reverse(&mut self) {
self.base.reverse();
}
/// Reserves capacity for at least `additional` more elements to be inserted in the given
/// `VecSet<T>`. The collection may reserve more space to speculatively avoid frequent
/// reallocations. After calling `reserve`, capacity will be greater than or equal to
/// `self.len() + additional`. Does nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter(["a"]);
/// set.reserve(10);
/// assert!(set.capacity() >= 11);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.base.reserve(additional);
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` for which `f(&e)` returns `false`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set: VecSet<i32> = VecSet::from([0, 1, 2, 3, 4, 5, 6, 7]);
/// set.retain(|&e| e % 2 == 0);
/// assert_eq!(set.len(), 4);
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
self.base.retain(|k, _| f(k));
}
/// Shrinks the capacity of the set as much as possible. It will drop down as much as possible
/// while maintaining the internal rules and possibly leaving some space in accordance with the
/// resize policy.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set: VecSet<i32> = VecSet::with_capacity(100);
/// set.insert(1);
/// set.insert(2);
/// assert!(set.capacity() >= 100);
/// set.shrink_to_fit();
/// assert!(set.capacity() >= 2);
/// ```
pub fn shrink_to_fit(&mut self) {
self.base.shrink_to_fit();
}
/// Shrinks the capacity of the set with a lower limit. It will drop down no lower than the
/// supplied limit while maintaining the internal rules and possibly leaving some space in
/// accordance with the resize policy.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set: VecSet<i32> = VecSet::with_capacity(100);
/// set.insert(1);
/// set.insert(2);
/// assert!(set.capacity() >= 100);
/// set.shrink_to(10);
/// assert!(set.capacity() >= 10);
/// set.shrink_to(0);
/// assert!(set.capacity() >= 2);
/// ```
pub fn shrink_to(&mut self, min_capacity: usize) {
self.base.shrink_to(min_capacity);
}
/// Splits the set into two at the given index.
///
/// Returns a newly allocated set containing the elements in the range `[at, len)`. After the
/// call, the original set will be left containing the elements `[0, at)` with its previous
/// capacity unchanged.
///
/// # Panics
///
/// Panics if `at > len`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["a", "b", "c"]);
/// let set2 = set.split_off(1);
/// assert_eq!(set, VecSet::from(["a"]));
/// assert_eq!(set2, VecSet::from(["b", "c"]));
/// ```
pub fn split_off(&mut self, at: usize) -> VecSet<T> {
VecSet {
base: self.base.split_off(at),
}
}
/// Removes the specified range from the vector in bulk, returning all removed elements as an
/// iterator. If the iterator is dropped before being fully consumed, it drops the remaining
/// removed elements.
///
/// The returned iterator keeps a mutable borrow on the vector to optimize its implementation.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if the end point is greater
/// than the length of the vector.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut v = VecSet::from([1, 2, 3]);
/// let u: VecSet<_> = v.drain(1..).collect();
/// assert_eq!(v, VecSet::from([1]));
/// assert_eq!(u, VecSet::from([2, 3]));
///
/// // A full range clears the vector, like `clear()` does
/// v.drain(..);
/// assert_eq!(v, VecSet::new());
/// ```
pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
where
R: RangeBounds<usize>,
{
Drain::new(self, range)
}
/// An iterator visiting all elements in insertion order. The iterator element type is
/// `&'a T`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let set = VecSet::from(["a", "b", "c"]);
///
/// for elem in set.iter() {
/// println!("elem: {elem}");
/// }
/// ```
pub fn iter(&self) -> Iter<'_, T> {
Iter::new(self.as_entries())
}
/// Sorts the set.
///
/// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
/// worst-case.
///
/// When applicable, unstable sorting is preferred because it is generally faster than stable
/// sorting and it doesn't allocate auxiliary memory. See
/// [`sort_unstable`](VecSet::sort_unstable).
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["b", "a", "c"]);
///
/// set.sort();
/// let vec: Vec<_> = set.into_iter().collect();
/// assert_eq!(vec, ["a", "b", "c"]);
/// ```
pub fn sort(&mut self)
where
T: Ord,
{
self.base.sort_keys();
}
/// Sorts the set.
///
/// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
/// allocate), and *O*(*n* \* log(*n*)) worst-case.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["b", "a", "c"]);
///
/// set.sort_unstable();
/// let vec: Vec<_> = set.into_iter().collect();
/// assert_eq!(vec, ["a", "b", "c"]);
/// ```
pub fn sort_unstable(&mut self)
where
T: Ord,
{
self.base.sort_unstable_keys();
}
/// Sorts the set with a comparator function.
///
/// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
/// worst-case.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["b", "a", "c"]);
///
/// set.sort_by(|a, b| b.cmp(&a));
/// let vec: Vec<_> = set.into_iter().collect();
/// assert_eq!(vec, ["c", "b", "a"]);
/// ```
pub fn sort_by<F>(&mut self, mut compare: F)
where
F: FnMut(&T, &T) -> Ordering,
{
self.base.sort_by(|a, b| compare(a.0, b.0));
}
/// Sorts the set with a comparator function.
///
/// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
/// allocate), and *O*(*n* \* log(*n*)) worst-case.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["b", "a", "c"]);
///
/// set.sort_unstable_by(|a, b| b.cmp(&a));
/// let vec: Vec<_> = set.into_iter().collect();
/// assert_eq!(vec, ["c", "b", "a"]);
/// ```
pub fn sort_unstable_by<F>(&mut self, mut compare: F)
where
F: FnMut(&T, &T) -> Ordering,
{
self.base.sort_unstable_by(|a, b| compare(a.0, b.0));
}
/// Extracts a slice containing the set elements.
///
/// ```
/// use vecmap::VecSet;
///
/// let set = VecSet::from(["b", "a", "c"]);
/// let slice = set.as_slice();
/// assert_eq!(slice, ["b", "a", "c"]);
/// ```
pub fn as_slice(&self) -> &[T] {
// SAFETY: `&[(T, ())]` and `&[T]` have the same memory layout.
unsafe { &*(self.base.as_slice() as *const [(T, ())] as *const [T]) }
}
/// Copies the set elements into a new `Vec<T>`.
///
/// ```
/// use vecmap::VecSet;
///
/// let set = VecSet::from(["b", "a", "c"]);
/// let vec = set.to_vec();
/// assert_eq!(vec, ["b", "a", "c"]);
/// // Here, `set` and `vec` can be modified independently.
/// ```
pub fn to_vec(&self) -> Vec<T>
where
T: Clone,
{
self.iter().cloned().collect()
}
/// Takes ownership of the set and returns its elements as a `Vec<T>`.
///
/// ```
/// use vecmap::VecSet;
///
/// let set = VecSet::from(["b", "a", "c"]);
/// let vec = set.into_vec();
/// assert_eq!(vec, ["b", "a", "c"]);
/// ```
pub fn into_vec(self) -> Vec<T> {
// SAFETY: `Vec<Slot<T, ()>>` and `Vec<T>` have the same memory layout.
unsafe { super::transmute_vec(self.base.base) }
}
/// Takes ownership of provided vector and converts it into `VecSet`.
///
/// # Safety
///
/// The vector must have no duplicate elements. One way to guarantee it is to sort the vector
/// (e.g. by using [`[T]::sort`][slice-sort]) and then drop duplicate elements (e.g. by using
/// [`Vec::dedup`]).
///
/// # Example
///
/// ```
/// use vecmap::VecSet;
///
/// let mut vec = vec!["b", "a", "c", "b"];
/// vec.sort();
/// vec.dedup();
/// // SAFETY: We've just deduplicated the vector.
/// let set = unsafe { VecSet::from_vec_unchecked(vec) };
///
/// assert_eq!(set, VecSet::from(["b", "a", "c"]));
/// ```
///
/// [slice-sort]: https://doc.rust-lang.org/std/primitive.slice.html#method.sort
pub unsafe fn from_vec_unchecked(vec: Vec<T>) -> Self {
// SAFETY: `Vec<T>` and `Vec<Slot<T, ()>>` have the same memory layout.
let base = unsafe { super::transmute_vec(vec) };
VecSet {
base: VecMap { base },
}
}
}
// Lookup operations.
impl<T> VecSet<T> {
/// Return `true` if an equivalent to `key` exists in the set.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::new();
/// set.insert(1);
/// assert_eq!(set.contains(&1), true);
/// assert_eq!(set.contains(&2), false);
/// ```
pub fn contains<Q>(&self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Eq + ?Sized,
{
self.base.contains_key(value)
}
/// Get the first element.
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter(["a", "b"]);
/// assert_eq!(set.first(), Some(&"a"));
/// ```
pub fn first(&self) -> Option<&T> {
self.base.first().map(|(k, _)| k)
}
/// Get the last element.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter(["a", "b"]);
/// assert_eq!(set.last(), Some(&"b"));
/// set.pop();
/// set.pop();
/// assert_eq!(set.last(), None);
/// ```
pub fn last(&self) -> Option<&T> {
self.base.last().map(|(k, _)| k)
}
/// Returns a reference to the value in the set, if any, that is equal to the given value.
///
/// The value may be any borrowed form of the set's value type, but [`Eq`] on the borrowed form
/// *must* match those for the value type.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let set = VecSet::from([1, 2, 3]);
/// assert_eq!(set.get(&2), Some(&2));
/// assert_eq!(set.get(&4), None);
/// ```
pub fn get<Q>(&self, value: &Q) -> Option<&T>
where
T: Borrow<Q>,
Q: ?Sized + Eq,
{
self.base.get_key_value(value).map(|(k, _)| k)
}
/// Return references to the element stored at `index`, if it is present, else `None`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::new();
/// set.insert(1);
/// assert_eq!(set.get_index(0), Some(&1));
/// assert_eq!(set.get_index(1), None);
/// ```
pub fn get_index(&self, index: usize) -> Option<&T> {
self.base.get_index(index).map(|(k, _)| k)
}
/// Returns the index and a reference to the value in the set, if any, that is equal to the
/// given value.
///
/// The value may be any borrowed form of the set's value type, but [`Eq`] on the borrowed form
/// *must* match those for the value type.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let set = VecSet::from([1, 2, 3]);
/// assert_eq!(set.get_full(&2), Some((1, &2)));
/// assert_eq!(set.get_full(&4), None);
/// ```
pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
where
T: Borrow<Q>,
Q: ?Sized + Eq,
{
self.base.get_full(value).map(|(index, k, _)| (index, k))
}
/// Return item index, if it exists in the set.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::new();
/// set.insert("a");
/// set.insert("b");
/// assert_eq!(set.get_index_of("a"), Some(0));
/// assert_eq!(set.get_index_of("b"), Some(1));
/// assert_eq!(set.get_index_of("c"), None);
/// ```
pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
where
T: Borrow<Q>,
Q: Eq + ?Sized,
{
self.base.get_index_of(value)
}
}
// Removal operations.
impl<T> VecSet<T> {
/// Removes the last element from the set and returns it, or [`None`] if it is empty.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter(["a", "b"]);
/// assert_eq!(set.pop(), Some("b"));
/// assert_eq!(set.pop(), Some("a"));
/// assert!(set.is_empty());
/// assert_eq!(set.pop(), None);
/// ```
pub fn pop(&mut self) -> Option<T> {
self.base.pop().map(|(k, ())| k)
}
/// Remove the element equivalent to `value`.
///
/// Like `Vec::remove`, the element is removed by shifting all of the elements that follow it,
/// preserving their relative order. **This perturbs the index of all of those elements!**
///
/// Returns `true` if `value` was found in the set.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter([1, 2, 3, 4]);
/// assert_eq!(set.remove(&2), true);
/// assert_eq!(set.remove(&2), false);
/// assert_eq!(set, VecSet::from_iter([1, 3, 4]));
/// ```
pub fn remove<Q>(&mut self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Eq + ?Sized,
{
self.base.remove(value).is_some()
}
/// Removes and returns the element at position `index` within the set, shifting all elements
/// after it to the left.
///
/// If you don't need the order of elements to be preserved, use [`swap_remove`] instead.
///
/// [`swap_remove`]: VecSet::swap_remove
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut v = VecSet::from(["a", "b", "c"]);
/// assert_eq!(v.remove_index(1), "b");
/// assert_eq!(v, VecSet::from(["a", "c"]));
/// ```
pub fn remove_index(&mut self, index: usize) -> T {
self.base.remove_index(index).0
}
/// Remove the element equivalent to `value`.
///
/// Like `Vec::swap_remove`, the element is removed by swapping it with the last element of the
/// map and popping it off. **This perturbs the position of what used to be the last element!**
///
/// Returns `true` if `value` was found in the set.
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from_iter([1, 2, 3, 4]);
/// assert_eq!(set.swap_remove(&2), true);
/// assert_eq!(set.swap_remove(&2), false);
/// assert_eq!(set, VecSet::from_iter([1, 4, 3]));
/// ```
pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
where
T: Borrow<Q>,
Q: Eq + ?Sized,
{
self.base.swap_remove(value).is_some()
}
/// Removes an element from the set and returns it.
///
/// The removed element is replaced by the last element of the set.
///
/// If you need to preserve the element order, use [`remove`] instead.
///
/// [`remove`]: VecSet::remove
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut v = VecSet::from(["foo", "bar", "baz", "qux"]);
///
/// assert_eq!(v.swap_remove_index(0), "foo");
/// assert_eq!(v, VecSet::from(["qux", "bar", "baz"]));
///
/// assert_eq!(v.swap_remove_index(0), "qux");
/// assert_eq!(v, VecSet::from(["baz", "bar"]));
/// ```
pub fn swap_remove_index(&mut self, index: usize) -> T {
self.base.swap_remove_index(index).0
}
/// Swaps the position of two elements in the set.
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Panics
///
/// Panics if `a` or `b` are out of bounds.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from(["a", "b", "c", "d"]);
/// set.swap_indices(1, 3);
/// assert_eq!(set.to_vec(), ["a", "d", "c", "b"]);
/// ```
pub fn swap_indices(&mut self, a: usize, b: usize) {
self.base.swap_indices(a, b);
}
/// Removes and returns the value in the set, if any, that is equal to the given one.
///
/// The value may be any borrowed form of the set's value type, but [`Eq`] on the borrowed form
/// *must* match those for the value type.
///
/// Like `Vec::remove`, the element is removed by shifting all of the elements that follow it,
/// preserving their relative order. **This perturbs the index of all of those elements!**
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from([1, 2, 3]);
/// assert_eq!(set.take(&2), Some(2));
/// assert_eq!(set.take(&2), None);
/// ```
pub fn take<Q>(&mut self, value: &Q) -> Option<T>
where
T: Borrow<Q>,
Q: ?Sized + Eq,
{
self.base.remove_entry(value).map(|(k, ())| k)
}
/// Removes and returns the value in the set, if any, that is equal to the given one.
///
/// The value may be any borrowed form of the set's value type, but [`Eq`] on the borrowed form
/// *must* match those for the value type.
///
/// Like `Vec::swap_remove`, the element is removed by swapping it with the last element of the
/// map and popping it off. **This perturbs the position of what used to be the last element!**
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::from([1, 2, 3]);
/// assert_eq!(set.take(&2), Some(2));
/// assert_eq!(set.take(&2), None);
/// ```
pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
where
T: Borrow<Q>,
Q: ?Sized + Eq,
{
self.base.swap_remove_entry(value).map(|(k, ())| k)
}
}
// Insertion operations.
impl<T> VecSet<T>
where
T: Eq,
{
/// Adds a value to the set.
///
/// Returns whether the value was newly inserted. That is:
///
/// - If the set did not previously contain this value, `true` is returned.
/// - If the set already contained this value, `false` is returned.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let mut set = VecSet::new();
///
/// assert_eq!(set.insert(2), true);
/// assert_eq!(set.insert(2), false);
/// assert_eq!(set.len(), 1);
/// ```
pub fn insert(&mut self, value: T) -> bool {
self.base.insert(value, ()).is_none()
}
}
// Set operations.
impl<T> VecSet<T>
where
T: Eq,
{
/// Visits the values representing the difference, i.e., the values that are in `self` but not
/// in `other`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
/// let a = VecSet::from([1, 2, 3]);
/// let b = VecSet::from([4, 2, 3, 4]);
///
/// // Can be seen as `a - b`.
/// for x in a.difference(&b) {
/// println!("{x}"); // Print 1
/// }
///
/// let diff: VecSet<_> = a.difference(&b).collect();
/// assert_eq!(diff, [1].iter().collect());
///
/// // Note that difference is not symmetric,
/// // and `b - a` means something else:
/// let diff: VecSet<_> = b.difference(&a).collect();
/// assert_eq!(diff, [4].iter().collect());
/// ```
pub fn difference<'a>(&'a self, other: &'a VecSet<T>) -> Difference<'a, T> {
Difference::new(self, other)
}
/// Visits the values representing the intersection, i.e., the values that are both in `self`
/// and `other`.
///
/// When an equal element is present in `self` and `other` then the resulting `Intersection`
/// may yield references to one or the other. This can be relevant if `T` contains fields which
/// are not compared by its `Eq` implementation, and may hold different value between the two
/// equal copies of `T` in the two sets.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
/// let a = VecSet::from([1, 2, 3]);
/// let b = VecSet::from([4, 2, 3, 4]);
///
/// // Print 2, 3 in arbitrary order.
/// for x in a.intersection(&b) {
/// println!("{x}");
/// }
///
/// let intersection: VecSet<_> = a.intersection(&b).collect();
/// assert_eq!(intersection, [2, 3].iter().collect());
/// ```
pub fn intersection<'a>(&'a self, other: &'a VecSet<T>) -> Intersection<'a, T> {
if self.len() <= other.len() {
Intersection::new(self, other)
} else {
Intersection::new(other, self)
}
}
/// Visits the values representing the symmetric difference, i.e., the values that are in
/// `self` or in `other` but not in both.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
/// let a = VecSet::from([1, 2, 3]);
/// let b = VecSet::from([4, 2, 3, 4]);
///
/// // Print 1, 4 in arbitrary order.
/// for x in a.symmetric_difference(&b) {
/// println!("{x}");
/// }
///
/// let diff1: VecSet<_> = a.symmetric_difference(&b).collect();
/// let diff2: VecSet<_> = b.symmetric_difference(&a).collect();
///
/// assert_eq!(diff1, diff2);
/// assert_eq!(diff1, [1, 4].iter().collect());
/// ```
pub fn symmetric_difference<'a>(&'a self, other: &'a VecSet<T>) -> SymmetricDifference<'a, T> {
SymmetricDifference::new(self, other)
}
/// Visits the values representing the union, i.e., all the values in `self` or `other`,
/// without duplicates.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
/// let a = VecSet::from([1, 2, 3]);
/// let b = VecSet::from([4, 2, 3, 4]);
///
/// // Print 1, 2, 3, 4 in arbitrary order.
/// for x in a.union(&b) {
/// println!("{x}");
/// }
///
/// let union: VecSet<_> = a.union(&b).collect();
/// assert_eq!(union, [1, 2, 3, 4].iter().collect());
/// ```
pub fn union<'a>(&'a self, other: &'a VecSet<T>) -> Union<'a, T> {
if self.len() >= other.len() {
Union::new(self, other)
} else {
Union::new(other, self)
}
}
/// Returns `true` if `self` has no elements in common with `other`. This is equivalent to
/// checking for an empty intersection.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let a = VecSet::from([1, 2, 3]);
/// let mut b = VecSet::new();
///
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(4);
/// assert_eq!(a.is_disjoint(&b), true);
/// b.insert(1);
/// assert_eq!(a.is_disjoint(&b), false);
/// ```
pub fn is_disjoint(&self, other: &VecSet<T>) -> bool {
if self.len() <= other.len() {
self.iter().all(|v| !other.contains(v))
} else {
other.iter().all(|v| !self.contains(v))
}
}
/// Returns `true` if the set is a subset of another, i.e., `other` contains at least all the
/// values in `self`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let sup = VecSet::from([1, 2, 3]);
/// let mut set = VecSet::new();
///
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(2);
/// assert_eq!(set.is_subset(&sup), true);
/// set.insert(4);
/// assert_eq!(set.is_subset(&sup), false);
/// ```
pub fn is_subset(&self, other: &VecSet<T>) -> bool {
if self.len() <= other.len() {
self.iter().all(|v| other.contains(v))
} else {
false
}
}
/// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the
/// values in `other`.
///
/// # Examples
///
/// ```
/// use vecmap::VecSet;
///
/// let sub = VecSet::from([1, 2]);
/// let mut set = VecSet::new();
///
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(0);
/// set.insert(1);
/// assert_eq!(set.is_superset(&sub), false);
///
/// set.insert(2);
/// assert_eq!(set.is_superset(&sub), true);
/// ```
pub fn is_superset(&self, other: &VecSet<T>) -> bool {
other.is_subset(self)
}
}
impl<T> Entries for VecSet<T> {
type Entry = Slot<T, ()>;
fn as_entries(&self) -> &[Self::Entry] {
self.base.as_entries()
}
fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
self.base.as_entries_mut()
}
fn into_entries(self) -> Vec<Self::Entry> {
self.base.into_entries()
}
}