1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
use std::ops::{Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Rem, RemAssign, Sub, SubAssign};

use num::Num;

/// A structure representing a fixed-length array of arbitrary elements and arbitrary length.
/// Since it was created primarily to represent mathematical vectors and colors, it supports four arithmetic operations.
///
/// 任意の要素、任意の長さの固定長配列を表す構造体です。
/// 主に数学的なベクトルや色を表すために作成したため、四則演算をサポートしています。
///
///
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new([1, 2, 3]);
/// let vec2 = VecX::new([4, 5, 6]);
///
/// // Add
/// assert_eq!(vec1 + vec2, VecX::new([5, 7, 9]));
/// // Sub
/// assert_eq!(vec1 - vec2, VecX::new([-3, -3, -3]));
/// // Mul
/// assert_eq!(vec1 * vec2, VecX::new([4, 10, 18]));
/// // Div
/// assert_eq!(vec1 / vec2, VecX::new([0, 0, 0]));
/// // Rem
/// assert_eq!(vec1 % vec2, VecX::new([1, 2, 3]));
///
/// // AddAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec += VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([5, 7, 9]));
/// // SubAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec -= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([-3, -3, -3]));
/// // MulAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec *= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([4, 10, 18]));
/// // DivAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec /= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([0, 0, 0]));
/// // RemAssign
/// let mut vec = VecX::new([1, 2, 3]);
/// vec %= VecX::new([4, 5, 6]);
/// assert_eq!(vec, VecX::new([1, 2, 3]));
/// ```
///
/// Non-numeric elements can also be array elements.
///
/// 数値以外を配列要素にすることもできます。
///
/// ```
/// use vec_x::{VecX};
///
/// let vec1 = VecX::new(["a", "b", "c"]);
/// ```
///
/// ```compile_fail
/// use vec_x::{VecX};
///
///
/// let vec1 = VecX::new(["a", "b", "c"]);
/// let vec2 = VecX::new(["d", "e", "f"]);
///
/// vec1 + vec2; // compile error!
/// ```
///
/// Using type aliases, as shown below, improves code readability.
///
/// 以下のように型エイリアスを使用することで、コードの可読性が向上します。
///
/// ```
/// use vec_x::{VecX};
///
/// type XYZ = VecX<f64, 3>;
/// type RGBA = VecX<u8, 4>;
///
/// struct Point {
///    position: XYZ,
///    color: RGBA,
/// }
///
/// let point = Point {
///    position: XYZ::new([1.0, 2.0, 3.0]),
///    color: RGBA::new([255, 0, 0, 255]),
/// };
/// ```
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct VecX<T, const N: usize> {
    pub data: [T; N],
}

impl<T: Default + Copy, const N: usize> Default for VecX<T, N> {
    fn default() -> Self {
        Self { data: [T::default(); N] }
    }
}

impl<T, const N: usize> VecX<T, N> {
    /// Generate a new `VecX`.
    ///
    /// 新しい `VecX` を生成する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new([1, 2, 3]);
    /// ```
    pub fn new(data: [T; N]) -> Self {
        Self { data }
    }

    /// Generate a `VecX` initialized with a single value.
    ///
    /// 単一の値で初期化された `VecX` を生成する。
    ///
    /// # Examples
    ///
    /// ```
    /// use vec_x::{VecX};
    ///
    /// let vec = VecX::new_with(1);
    ///
    /// assert_eq!(vec, VecX::new([1, 1, 1]));
    /// ```
    pub fn new_with(value: T) -> Self
        where
            T: Copy,
    {
        Self { data: [value; N] }
    }
}

impl<T, const N: usize> Index<usize> for VecX<T, N> {
    type Output = T;
    fn index(&self, index: usize) -> &Self::Output {
        &self.data[index]
    }
}

impl<T, const N: usize> IndexMut<usize> for VecX<T, N> {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.data[index]
    }
}

impl<T: Num + Copy, const N: usize> Add<Self> for VecX<T, N> {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        let data: [T; N] = self.data.into_iter().zip(rhs.data).map(|(a, b)| a + b).collect::<Vec<_>>().as_slice().try_into().unwrap();

        Self { data }
    }
}

impl<T: Num + Copy, const N: usize> Sub<Self> for VecX<T, N> {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        let data: [T; N] = self.data.into_iter().zip(rhs.data).map(|(a, b)| a - b).collect::<Vec<_>>().as_slice().try_into().unwrap();

        Self { data }
    }
}

impl<T: Num + Copy, const N: usize> Mul<Self> for VecX<T, N> {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        let data: [T; N] = self.data.into_iter().zip(rhs.data).map(|(a, b)| a * b).collect::<Vec<_>>().as_slice().try_into().unwrap();

        Self { data }
    }
}

impl<T: Num + Copy, const N: usize> Div<Self> for VecX<T, N> {
    type Output = Self;

    fn div(self, rhs: Self) -> Self::Output {
        let data: [T; N] = self.data.into_iter().zip(rhs.data).map(|(a, b)| a / b).collect::<Vec<_>>().as_slice().try_into().unwrap();

        Self { data }
    }
}

impl<T: Num + Copy, const N: usize> Rem<Self> for VecX<T, N> {
    type Output = Self;

    fn rem(self, rhs: Self) -> Self::Output {
        let data: [T; N] = self.data.into_iter().zip(rhs.data).map(|(a, b)| a % b).collect::<Vec<_>>().as_slice().try_into().unwrap();

        Self { data }
    }
}

impl<T: Num + AddAssign, const N: usize> AddAssign for VecX<T, N> {
    fn add_assign(&mut self, rhs: Self) {
        rhs.data.into_iter().enumerate().for_each(|(i, v)| self.data[i] += v);
    }
}

impl<T: Num + SubAssign, const N: usize> SubAssign for VecX<T, N> {
    fn sub_assign(&mut self, rhs: Self) {
        rhs.data.into_iter().enumerate().for_each(|(i, v)| self.data[i] -= v);
    }
}

impl<T: Num + MulAssign, const N: usize> MulAssign for VecX<T, N> {
    fn mul_assign(&mut self, rhs: Self) {
        rhs.data.into_iter().enumerate().for_each(|(i, v)| self.data[i] *= v);
    }
}

impl<T: Num + DivAssign, const N: usize> DivAssign for VecX<T, N> {
    fn div_assign(&mut self, rhs: Self) {
        rhs.data.into_iter().enumerate().for_each(|(i, v)| self.data[i] /= v);
    }
}

impl<T: Num + RemAssign, const N: usize> RemAssign for VecX<T, N> {
    fn rem_assign(&mut self, rhs: Self) {
        rhs.data.into_iter().enumerate().for_each(|(i, v)| self.data[i] %= v);
    }
}