1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
use std::alloc::Layout;
use std::marker::PhantomData;
use std::mem::ManuallyDrop;

use super::{r#try, Try};

mod general_zip;

pub use general_zip::*;

/// A type that contains useful meta-data about a

/// the Vec<_> that it was created from

pub struct Input<T> {
    // the start of the vec data segment

    start: *mut T,

    // the current position in the vec data segment

    ptr: *mut T,

    // the length of the vec data segment

    len: usize,

    // the capacity of the vec data segment

    cap: usize,

    drop_alloc: bool,
    drop: PhantomData<T>,
}

/// An write only buffer that may overlap with some input buffer

/// this allows reuse of that input buffer to turn it into a

/// `Vec<_>` inside of `tuple::try_into_vec`

pub struct Output<T> {
    // the start of the vec data segment

    start: *mut T,

    // the current position in the vec data segment

    ptr: *mut T,

    // the capacity of the vec data segment

    cap: usize,
    drop: PhantomData<T>,
}

impl<T> Output<T> {
    /// Create a new output buffer, this buffer will own it's data segment

    /// from `start` to `start.add(cap)`

    pub unsafe fn new(start: *mut T, cap: usize) -> Self {
        Self {
            start,
            ptr: start,
            cap,
            drop: PhantomData,
        }
    }
}

impl<T> From<Vec<T>> for Input<T> {
    fn from(vec: Vec<T>) -> Self {
        let mut vec = ManuallyDrop::new(vec);

        let ptr = vec.as_mut_ptr();

        Self {
            start: ptr,
            ptr,
            len: vec.len(),
            cap: vec.capacity(),
            drop_alloc: true,
            drop: PhantomData,
        }
    }
}

/// Extension methods for `Vec<T>`

pub trait VecExt: Sized {
    /// The type that the `Vec<T>` stores

    type T;

    /// Map a vector to another vector, will try and reuse the allocation if the

    /// allocation layouts of the two types match, i.e. if

    /// `std::alloc::Layout::<T>::new() == std::alloc::Layout::<U>::new()`

    /// then the allocation will be reused

    fn map<U, F: FnMut(Self::T) -> U>(self, mut f: F) -> Vec<U> {
        use std::convert::Infallible;

        match self.try_map(move |x| Ok::<_, Infallible>(f(x))) {
            Ok(x) => x,
            Err(x) => match x {},
        }
    }

    /// Map a vector to another vector, will try and reuse the allocation if the

    /// allocation layouts of the two types match, i.e. if

    /// `std::alloc::Layout::<T>::new() == std::alloc::Layout::<U>::new()`

    /// then the allocation will be reused

    ///

    /// The mapping function can be fallible, and on early return, it will drop all previous values,

    /// and the rest of the input vector. Thre error will be returned as a `Result`

    fn try_map<U, R: Try<Ok = U>, F: FnMut(Self::T) -> R>(self, f: F) -> Result<Vec<U>, R::Error>;

    /// Zip a vector to another vector and combine them, the result will be returned,

    /// the allocation will be reused if possible, the larger allocation of the input vectors

    /// will be used if all of `T`, `U`, and `V` have the same allocation layouts.

    fn zip_with<U, V, F: FnMut(Self::T, U) -> V>(self, other: Vec<U>, mut f: F) -> Vec<V> {
        use std::convert::Infallible;

        match self.try_zip_with(other, move |x, y| Ok::<_, Infallible>(f(x, y))) {
            Ok(x) => x,
            Err(x) => match x {},
        }
    }

    /// Zip a vector to another vector and combine them, the result will be returned,

    /// the allocation will be reused if possible, the larger allocation of the input vectors

    /// will be used if all of `T`, `U`, and `V` have the same allocation layouts.

    ///

    /// The mapping function can be fallible, and on early return, it will drop all previous values,

    /// and the rest of the input vectors. Thre error will be returned as a `Result`

    fn try_zip_with<U, V, R: Try<Ok = V>, F: FnMut(Self::T, U) -> R>(
        self,
        other: Vec<U>,
        f: F,
    ) -> Result<Vec<V>, R::Error>;

    /// Drops all of the values in the vector and

    /// create a new vector from it if the layouts are compatible

    ///

    /// if layouts are not compatible, then return `Vec::new()`

    fn drop_and_reuse<U>(self) -> Vec<U>;
}

impl<T> VecExt for Vec<T> {
    type T = T;

    fn try_map<U, R: Try<Ok = U>, F: FnMut(Self::T) -> R>(self, f: F) -> Result<Vec<U>, R::Error> {
        // try_zip_with! { self => |x| { f(x) } }


        if Layout::new::<T>() == Layout::new::<U>() {
            let iter = MapIter {
                init_len: 0,
                data: Input::from(self),
                drop: PhantomData,
            };

            iter.try_into_vec(f)
        } else {
            self.into_iter().map(f).map(R::into_result).collect()
        }
    }

    fn try_zip_with<U, V, R: Try<Ok = V>, F: FnMut(Self::T, U) -> R>(
        self,
        other: Vec<U>,
        mut f: F,
    ) -> Result<Vec<V>, R::Error> {
        // try_zip_with! { self, other => |x, y| { f(x, y) } }


        let len = self.len().min(other.len());
        match (
            Layout::new::<T>() == Layout::new::<V>(),
            Layout::new::<U>() == Layout::new::<V>(),
            self.capacity() >= other.capacity(),
        ) {
            (true, true, true) | (true, false, _) => ZipWithIter {
                init_len: len,
                min_len: len,
                drop: PhantomData,

                left: Input::from(self),
                right: Input::from(other),
            }
            .try_into_vec(f),
            (true, true, false) | (false, true, _) => ZipWithIter {
                init_len: len,
                min_len: len,
                drop: PhantomData,

                left: Input::from(other),
                right: Input::from(self),
            }
            .try_into_vec(move |y, x| f(x, y)),
            (false, false, _) => self
                .into_iter()
                .zip(other.into_iter())
                .map(move |(x, y)| f(x, y))
                .map(R::into_result)
                .collect(),
        }
    }

    fn drop_and_reuse<U>(mut self) -> Vec<U> {
        self.clear();

        // no more elements in the vector

        self.map(|_| unsafe { std::hint::unreachable_unchecked() })
    }
}

struct MapIter<T, U> {
    init_len: usize,

    data: Input<T>,

    // for drop check

    drop: PhantomData<U>,
}

impl<T, U> MapIter<T, U> {
    fn try_into_vec<R: Try<Ok = U>, F: FnMut(T) -> R>(
        mut self,
        mut f: F,
    ) -> Result<Vec<U>, R::Error> {
        // does a pointer walk, easy for LLVM to optimize

        while self.init_len < self.data.len {
            unsafe {
                let value = r#try!(f(self.data.ptr.read()));

                (self.data.ptr as *mut U).write(value);

                self.data.ptr = self.data.ptr.add(1);
                self.init_len += 1;
            }
        }

        let vec = ManuallyDrop::new(self);

        // we don't want to free the memory

        // which is what dropping this `MapIter` will do

        unsafe {
            Ok(Vec::from_raw_parts(
                vec.data.start as *mut U,
                vec.data.len,
                vec.data.cap,
            ))
        }
    }
}

impl<T, U> Drop for MapIter<T, U> {
    fn drop(&mut self) {
        unsafe {
            // destroy the initialized output

            defer! {
                Vec::from_raw_parts(
                    self.data.start as *mut U,
                    self.init_len,
                    self.data.cap
                );
            }

            // offset by 1 because self.ptr is pointing to

            // memory that was just read from, dropping that

            // would lead to a double free

            std::ptr::drop_in_place(std::slice::from_raw_parts_mut(
                self.data.ptr.add(1),
                self.data.len - self.init_len - 1,
            ));
        }
    }
}

// The size of these structures don't matter since they are transient

// So I didn't bother optimizing the size of them, and instead put all the

// useful information I wanted, so that it could be initialized all at once

struct ZipWithIter<T, U, V> {
    // This left buffer is the one that will be reused

    // to write the output into

    left: Input<T>,

    // We will only read from this buffer

    //

    // I considered using `std::vec::IntoIter`, but that lead to worse code

    // because LLVM wasn't able to elide the bounds check on the iterator

    right: Input<U>,

    // the length of the output that has been written to

    init_len: usize,
    // the length of the vectors that must be traversed

    min_len: usize,

    // for drop check

    drop: PhantomData<V>,
}

impl<T, U, V> ZipWithIter<T, U, V> {
    fn try_into_vec<R: Try<Ok = V>, F: FnMut(T, U) -> R>(
        mut self,
        mut f: F,
    ) -> Result<Vec<V>, R::Error> {
        debug_assert_eq!(Layout::new::<T>(), Layout::new::<V>());

        // this does a pointer walk and reads from left and right in lock-step

        // then passes those values to the function to be processed

        while let Some(min_len) = self.min_len.checked_sub(1) {
            unsafe {
                self.min_len = min_len;

                let out = self.left.ptr as *mut V;
                let left = self.left.ptr;
                let right = self.right.ptr;

                self.left.ptr = self.left.ptr.add(1);
                self.right.ptr = self.right.ptr.add(1);

                let value = r#try!(f(left.read(), right.read()));

                out.write(value);
            }
        }

        // We don't want to drop `self` if dropping the excess elements panics

        // as that could lead to double drops

        let vec = ManuallyDrop::new(self);
        let output;

        unsafe {
            // create the vector now, so that if we panic in drop, we don't leak it

            output = Vec::from_raw_parts(vec.left.start as *mut V, vec.init_len, vec.left.cap);

            // yay for defers running in reverse order and cleaning up the

            // old vecs properly


            // cleans up the right vec

            defer! {
                Vec::from_raw_parts(vec.right.start, 0, vec.right.cap);
            }

            // drops the remaining elements of the right vec

            defer! {
                std::ptr::drop_in_place(std::slice::from_raw_parts_mut(
                    vec.right.ptr,
                    vec.right.len - vec.init_len
                ));
            }

            // drop the remaining elements of the left vec

            std::ptr::drop_in_place(std::slice::from_raw_parts_mut(
                vec.left.ptr,
                vec.left.len - vec.init_len,
            ));
        }

        Ok(output)
    }
}

impl<T, U, V> Drop for ZipWithIter<T, U, V> {
    fn drop(&mut self) {
        unsafe {
            let len = self.init_len - self.min_len;

            // This will happen last

            //

            // frees the allocated memory, but does not run destructors

            defer! {
                Vec::from_raw_parts(self.left.start, 0, self.left.cap);
                Vec::from_raw_parts(self.right.start, 0, self.right.cap);
            }

            // The order of the next two defers don't matter for correctness

            //

            // They free the remaining parts of the two input vectors

            defer! {
                std::ptr::drop_in_place(std::slice::from_raw_parts_mut(self.right.ptr, self.right.len - len));
            }

            defer! {
                std::ptr::drop_in_place(std::slice::from_raw_parts_mut(self.left.ptr, self.left.len - len));
            }

            // drop the output that we already calculated

            std::ptr::drop_in_place(std::slice::from_raw_parts_mut(
                self.left.start as *mut V,
                len - 1,
            ));
        }
    }
}