1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
//! A library for storing and searching text embeddings using a vector database.
//!
//! This library provides an `EmbeddingsDb` struct for managing a database of text embeddings,
//! allowing efficient storage, retrieval, and similarity search.
//!
//! The key components of the library include:
//! - `EmbeddingsDb`: The main struct for interacting with the embeddings' database.
//! - `SimilaritySearch`: A builder-style struct for performing similarity searches on the embeddings.
//! - `EmbedText`: A struct representing a text to be embedded and stored in the database.
//! - `ComparedEmbedText`: A struct representing a text with its similarity distance after a search.
//! - `EmbeddingEngineOptions`: A struct for configuring the embedding engine options.
#![warn(missing_debug_implementations, rust_2018_idioms, missing_docs)]
use std::path::{Path, PathBuf};
use std::sync::Arc;
use arrow_array::{ArrayRef, FixedSizeListArray, RecordBatch, RecordBatchIterator, StringArray};
use arrow_array::types::Float32Type;
use arrow_schema::ArrowError;
use fastembed::{Embedding, EmbeddingModel, InitOptions, ModelInfo, TextEmbedding};
use futures::TryStreamExt;
use lancedb::{connect, Connection, Table};
use lancedb::arrow::arrow_schema::{DataType, Field, Schema, SchemaRef};
use lancedb::index::Index;
use lancedb::query::{ExecutableQuery, QueryBase, Select};
use log::{error, info};
use serde::{Deserialize, Serialize};
use thiserror::Error;
const EMBED_TABLE_NAME: &str = "note_embeddings";
const DEFAULT_EMBEDDINGS_CACHE_DIR: &str = ".fastembed_cache";
const DEFAULT_EMBEDDING_MODEL: EmbeddingModel = EmbeddingModel::BGESmallENV15;
/// The main struct for interacting with the embeddings' database.
pub struct EmbeddingsDb {
vec_db: Connection,
embedding_engine: TextEmbedding,
embedding_model_info: ModelInfo,
}
/// A builder-style struct for performing similarity searches on the embeddings.
pub struct SimilaritySearch<'a> {
embed_db: &'a EmbeddingsDb,
similar_text: String,
threshold: Option<f32>,
limit: Option<usize>,
}
impl<'a> SimilaritySearch<'a> {
/// Creates a new `SimilaritySearch` instance.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions, TextChunk, SimilaritySearch};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// let embed_text = "Example text";
/// let search = SimilaritySearch::new(&embed_db, embed_text);
/// # Ok(())
/// # }
/// ```
pub fn new(embed_db: &'a EmbeddingsDb, similar_text: &str) -> Self {
Self {
embed_db,
similar_text: similar_text.into(),
threshold: None,
limit: None,
}
}
/// Sets the similarity threshold for the search.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions, TextChunk, SimilaritySearch};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// # let embed_text = "Example text";
/// let search = SimilaritySearch::new(&embed_db, embed_text)
/// .threshold(0.8);
/// # Ok(())
/// # }
/// ```
pub fn threshold(mut self, threshold: f32) -> Self {
self.threshold = Some(threshold);
self
}
/// Sets the maximum number of results to return.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions, TextChunk, SimilaritySearch};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// # let embed_text = "Example text";
/// let search = SimilaritySearch::new(&embed_db, embed_text)
/// .limit(10);
/// # Ok(())
/// # }
/// ```
pub fn limit(mut self, limit: usize) -> Self {
self.limit = Some(limit);
self
}
/// Executes the similarity search and returns the results.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions, TextChunk, SimilaritySearch};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// # let embed_text = "Example text";
/// let results = SimilaritySearch::new(&embed_db, embed_text)
/// .threshold(0.8)
/// .limit(10)
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
/// let results = SimilaritySearch::new(&embed_db, embed_text)
/// .threshold(0.8)
/// .limit(10)
/// .execute()
/// .await?;
/// ```
pub async fn execute(self) -> Result<Vec<ComparedTextBlock>, EmbedDbError> {
let embedding = self.embed_db.create_embeddings(&[self.similar_text])?;
// flattening a 2D vector into a 1D vector. This is necessary because the search
// function of the Table trait expects a 1D vector as input. However, the
// create_embeddings function returns a 2D vector (a vector of embeddings,
// where each embedding is itself a vector)
let embedding: Vec<f32> = embedding
.into_iter()
.flat_map(|embedding| embedding.to_vec())
.collect();
let table = self
.embed_db
.vec_db
.open_table(EMBED_TABLE_NAME)
.execute()
.await?;
let query = table
.query()
.select(EmbeddingsDb::select_columns())
.nearest_to(embedding)?;
let query = if let Some(limit) = self.limit {
query.limit(limit)
} else {
query
};
let result = query.execute().await?.try_collect::<Vec<_>>().await?;
EmbeddingsDb::convert_to_compared_embed_texts(result, &self.threshold)
}
}
/// A struct representing a text to be embedded and stored in the database.
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct TextChunk {
pub id: String,
pub text: String,
}
/// A struct representing a text with its similarity distance after a search.
#[derive(Serialize, Deserialize, Clone, Debug)]
pub struct ComparedTextBlock {
pub id: String,
pub text: String,
#[serde(rename = "_distance")]
pub distance: f32,
}
/// A struct for configuring the embedding engine options.
#[derive(Debug, Clone)]
pub struct EmbeddingEngineOptions {
pub model_name: EmbeddingModel,
// pub execution_providers: Vec<ExecutionProviderDispatch>,
// pub max_length: usize,
pub cache_dir: PathBuf,
pub show_download_progress: bool,
}
impl Default for EmbeddingEngineOptions {
fn default() -> Self {
Self {
model_name: DEFAULT_EMBEDDING_MODEL,
// execution_providers: Default::default(),
// max_length: DEFAULT_MAX_LENGTH,
cache_dir: Path::new(DEFAULT_EMBEDDINGS_CACHE_DIR).to_path_buf(),
show_download_progress: true,
}
}
}
impl EmbeddingsDb {
/// Creates a new instance of `EmbeddingsDb`.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// # Ok(())
/// # }
/// ```
pub async fn new(
db_path: &str,
embedding_engine_options: EmbeddingEngineOptions,
) -> Result<EmbeddingsDb, EmbedDbError> {
let embedding_engine = TextEmbedding::try_new(InitOptions {
model_name: embedding_engine_options.model_name,
show_download_progress: embedding_engine_options.show_download_progress,
cache_dir: embedding_engine_options.cache_dir,
..Default::default()
})?;
let model_info = TextEmbedding::list_supported_models()
.into_iter()
.find(|info| info.model == DEFAULT_EMBEDDING_MODEL)
.ok_or(EmbedDbError::Config("Embed Model not found".to_string()))?;
info!("Using embedding model: {:?}", model_info);
let db_conn = connect(db_path).execute().await?;
let embed_db = EmbeddingsDb {
vec_db: db_conn,
embedding_model_info: model_info,
embedding_engine,
};
embed_db.init_table(EMBED_TABLE_NAME).await?;
Ok(embed_db)
}
/// Retrieves the names of all tables in the database.
pub(crate) async fn get_table_names(&self) -> Result<Vec<String>, EmbedDbError> {
self.vec_db
.table_names()
.execute()
.await
.map_err(EmbedDbError::VectorDbEngine)
}
/// Initializes the embeddings table if it doesn't exist.
async fn init_table(&self, table_name: &str) -> Result<(), EmbedDbError> {
let table_names = self.vec_db.table_names().execute().await?;
let table_exists = table_names.contains(&table_name.to_string());
if !table_exists {
let schema = self.get_table_schema();
self.vec_db
.create_empty_table(table_name, schema)
.execute()
.await?;
}
Ok(())
}
/// Retrieves the schema for the embeddings table.
fn get_table_schema(&self) -> SchemaRef {
Arc::new(Schema::new(vec![
Field::new("id", DataType::Utf8, false),
Field::new("text", DataType::Utf8, false),
Field::new(
"embeddings",
DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)),
self.embedding_model_info.dim as i32,
),
true,
),
]))
}
/// Upserts a collection of texts into the embeddings database.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions, TextChunk};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// let texts = vec![
/// TextChunk {
/// id: "1".to_string(),
/// text: "Example text 1".to_string(),
/// },
/// TextChunk {
/// id: "2".to_string(),
/// text: "Example text 2".to_string(),
/// },
/// ];
/// embed_db.upsert_texts(&texts).await?;
/// # Ok(())
/// # }
/// ```
pub async fn upsert_texts(&self, texts: &[TextChunk]) -> Result<(), EmbedDbError> {
let table = self.vec_db.open_table(EMBED_TABLE_NAME).execute().await?;
// Extract the ids and texts from the input TextBlock vector
let ids: Vec<String> = texts.iter().map(|doc| doc.id.to_string()).collect();
let texts: Vec<String> = texts.iter().map(|doc| doc.text.to_string()).collect();
// Create embeddings for the texts using the embedding engine
let embeddings = self.create_embeddings(&texts)?;
// Get the schema for the embeddings table
let schema = self.get_table_schema();
// Wrap the embeddings in Options to match the expected format for FixedSizeListArray
// vec![
// Some(vec![Some(0), Some(1), Some(2)]),
// Some(vec![Some(6), Some(7), Some(45)]),
// ];
let option_wrapped_embeddings: Vec<_> = embeddings
.into_iter()
.map(|vec| Some(vec.into_iter().map(Some).collect::<Vec<_>>()))
.collect();
// Create a RecordBatch with the ids, texts, and embeddings
let batch = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Arc::new(StringArray::from(ids)) as ArrayRef),
Arc::new(Arc::new(StringArray::from(texts)) as ArrayRef),
Arc::new(
FixedSizeListArray::from_iter_primitive::<Float32Type, _, _>(
option_wrapped_embeddings,
self.embedding_model_info.dim as i32,
),
),
],
)?;
// Create a RecordBatchIterator with the single batch and the schema
let new_data = RecordBatchIterator::new(vec![Ok(batch)], schema);
// Create a merge_insert builder for the embeddings table
let mut merge_insert = table.merge_insert(&["id"]);
// Configure the merge_insert builder:
// - Update all columns when a matching "id" is found
// - Insert a new record when no matching "id" is found
merge_insert
.when_matched_update_all(None)
.when_not_matched_insert_all();
// Execute the merge_insert operation with the new data
merge_insert.execute(Box::new(new_data)).await?;
Ok(())
}
/// Deletes texts from the embeddings database by their IDs.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// let ids = vec!["1".to_string(), "2".to_string()];
/// embed_db.delete_texts(&ids).await?;
/// # Ok(())
/// # }
/// ```
pub async fn delete_texts(&self, ids: &[String]) -> Result<(), EmbedDbError> {
let table = self.vec_db.open_table(EMBED_TABLE_NAME).execute().await?;
// Properly quote each ID and join them with commas
let quoted_ids = ids
.iter()
.map(|s| format!("'{}'", s))
.collect::<Vec<String>>()
.join(", ");
let delete_query = format!("id in ({})", quoted_ids);
table
.delete(&delete_query)
.await
.map_err(EmbedDbError::from)
}
/// Clears all data from the embeddings database.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// embed_db.empty_db().await?;
/// # Ok(())
/// # }
/// ```
pub async fn empty_db(&self) -> Result<(), EmbedDbError> {
self.vec_db.drop_table(EMBED_TABLE_NAME).await?;
self.init_table(EMBED_TABLE_NAME).await?;
Ok(())
}
/// Retrieves a text from the database by its ID.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// let text = embed_db.get_text_by_id("1").await?;
/// # Ok(())
/// # }
/// ```
pub async fn get_text_by_id(&self, id: &str) -> Result<Option<TextChunk>, EmbedDbError> {
let filter = format!("id = '{}'", id);
let table = self.vec_db.open_table(EMBED_TABLE_NAME).execute().await?;
let result = table
.query()
.only_if(filter)
// no need to return embeddings
.select(Self::select_columns())
.execute()
.await?
.try_collect::<Vec<_>>()
.await?;
match result.as_slice() {
[] => Ok(None),
[single_result] => {
let mut texts = Self::convert_to_embed_texts(&vec![single_result.clone()])?;
Ok(texts.pop())
}
_ => {
let err_msg = format!(
"Greater than one record returned for id {}. Found {} total",
id,
result.len()
)
.to_string();
error!("{}", &err_msg);
Err(EmbedDbError::InvalidState(err_msg))
}
}
}
/// Returns all records held in the database.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// let all_texts = embed_db.get_all_texts().await?;
/// # Ok(())
/// # }
/// ```
pub async fn get_all_texts(&self) -> Result<Vec<TextChunk>, EmbedDbError> {
let table = self.vec_db.open_table(EMBED_TABLE_NAME).execute().await?;
let stream = table
.query()
.select(Self::select_columns())
.execute()
.await?;
let batch = stream.try_collect::<Vec<_>>().await?;
let texts = Self::convert_to_embed_texts(&batch)?;
Ok(texts)
}
fn select_columns() -> Select {
Select::Columns(vec!["id".to_string(), "text".to_string()])
}
/// Creates a new `SimilaritySearch` instance for finding similar texts.
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions, TextChunk};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// # let search_text = "Example text";
/// let search = embed_db.get_similar_to(search_text);
/// # Ok(())
/// # }
/// ```
pub fn get_similar_to(&self, similar_text: &str) -> SimilaritySearch {
SimilaritySearch::new(self, similar_text)
}
/// Creates an index on the embeddings table.
pub async fn create_index(table: &Table) -> Result<(), EmbedDbError> {
table
.create_index(&["vector"], Index::Auto)
.execute()
.await
.map_err(EmbedDbError::VectorDbEngine)
}
/// Retrieves the total number of items in the embeddings database.
///
/// # Example
///
/// ```
/// use vec_embed_store::{EmbeddingsDb, EmbeddingEngineOptions};
///
/// # async fn example() -> Result<(), Box<dyn std::error::Error>> {
/// # let embed_db = EmbeddingsDb::new("path/to/db", EmbeddingEngineOptions::default()).await?;
/// let count = embed_db.items_count().await?;
/// # Ok(())
/// # }
/// ```
pub async fn items_count(&self) -> Result<usize, EmbedDbError> {
let table = self.vec_db.open_table(EMBED_TABLE_NAME).execute().await?;
Ok(table.count_rows(None).await?)
}
/// Retrieves the storage path of the embeddings' database.
pub(crate) fn storage_path(&self) -> String {
self.vec_db.uri().to_string()
}
/// Creates embeddings for the given texts using the embedding engine.
pub(crate) fn create_embeddings(
&self,
texts: &[String],
) -> Result<Vec<Embedding>, EmbedDbError> {
self.embedding_engine
.embed(texts.to_vec(), None)
.map_err(EmbedDbError::from)
}
/// Converts the record batch result to a vector of `EmbedText` instances.
fn convert_to_embed_texts(result: &Vec<RecordBatch>) -> Result<Vec<TextChunk>, EmbedDbError> {
let mut texts: Vec<TextChunk> = Vec::new();
for item in result {
let x: Vec<TextChunk> = serde_arrow::from_record_batch(item)?;
texts.extend(x);
}
Ok(texts)
}
/// Converts the record batch result to a vector of `ComparedEmbedText` instances,
/// filtering based on the provided threshold.
fn convert_to_compared_embed_texts(
result: Vec<RecordBatch>,
threshold: &Option<f32>,
) -> Result<Vec<ComparedTextBlock>, EmbedDbError> {
let mut compared_embed_texts: Vec<ComparedTextBlock> = Vec::new();
for item in result {
let x: Vec<ComparedTextBlock> = serde_arrow::from_record_batch(&item)?;
if let Some(threshold_value) = threshold {
compared_embed_texts
.extend(x.into_iter().filter(|doc| &doc.distance <= threshold_value));
} else {
compared_embed_texts.extend(x);
}
}
Ok(compared_embed_texts)
}
}
#[derive(Error, Debug)]
pub enum EmbedDbError {
#[error("Embedding error: {0}")]
EmbeddingsEngine(#[from] anyhow::Error),
#[error("LanceDb error: {0}")]
VectorDbEngine(#[from] lancedb::Error),
#[error("SerDe error: {0}")]
SerDe(#[from] serde_arrow::Error),
#[error("Arrow error: {0}")]
Arrow(#[from] ArrowError),
#[error("Configuration error: {0}")]
Config(String),
#[error("Invalid State error: {0}")]
InvalidState(String),
}
#[cfg(test)]
mod tests {
use std::fs;
use std::path::Path;
use super::*;
fn remove_dir_if_exists<P: AsRef<Path>>(path: P) -> std::io::Result<()> {
if path.as_ref().exists() {
fs::remove_dir_all(path)
} else {
Ok(())
}
}
async fn get_embed_db() -> (EmbeddingsDb, String) {
let test_db_path = "test_db";
remove_dir_if_exists(test_db_path).expect("Failed removing test db dir");
let embedding_engine_options = EmbeddingEngineOptions {
model_name: EmbeddingModel::BGESmallENV15,
..Default::default()
};
(
EmbeddingsDb::new(test_db_path, embedding_engine_options)
.await
.unwrap(),
test_db_path.to_string(),
)
}
fn get_texts() -> Vec<TextChunk> {
vec![
TextChunk {
id: "1".to_string(),
text: "Hello world".to_string(),
},
TextChunk {
id: "2".to_string(),
text: "Rust programming".to_string(),
},
TextChunk {
id: "3".to_string(),
text: "LLM development".to_string(),
},
]
}
#[tokio::test]
async fn test_suite() {
// not able to overcome some sort of race-condition/state-issue with construction
// of TextEmbedding per test. Also, not successful in implementing some sort of singleton
// pattern over TextEmbedding (use a single instance for all tests)
// So... I'm left with this, <shrug>, it works and I have a test suite.
let (embed_db, embed_db_path) = get_embed_db().await;
create_embed_db(&embed_db, &embed_db_path).await;
embed_db.empty_db().await.unwrap();
create_embed_db_table(&embed_db).await;
embed_db.empty_db().await.unwrap();
create_embeddings(&embed_db).await;
embed_db.empty_db().await.unwrap();
test_add_texts(&embed_db).await;
embed_db.empty_db().await.unwrap();
test_empty_db(&embed_db).await;
embed_db.empty_db().await.unwrap();
test_get_similar_texts(&embed_db).await;
embed_db.empty_db().await.unwrap();
test_delete_texts(&embed_db).await;
embed_db.empty_db().await.unwrap();
test_upsert_texts(&embed_db).await;
embed_db.empty_db().await.unwrap();
test_get_all_texts(&embed_db).await;
}
async fn create_embed_db(embed_db: &EmbeddingsDb, embed_db_path: &str) {
assert_eq!(embed_db.storage_path(), embed_db_path);
}
async fn create_embed_db_table(embed_db: &EmbeddingsDb) {
let table_names = embed_db.get_table_names().await.unwrap();
assert_eq!(table_names.len(), 1);
assert_eq!(table_names.first().unwrap(), EMBED_TABLE_NAME);
}
async fn create_embeddings(embed_db: &EmbeddingsDb) {
let data = vec!["hello world".to_string()];
let embeddings = embed_db.create_embeddings(&data).unwrap();
assert_eq!(
embeddings.len(),
data.len(),
"The returned item is one vec per given data item"
);
assert_eq!(
embeddings[0].len() as i32, embed_db.embedding_model_info.dim as i32,
"The embeddings within the returned vec should be 384 floats (AllMiniLML6V2 uses 384 dimensions)");
}
async fn test_add_texts(embed_db: &EmbeddingsDb) {
let docs_to_add = get_texts();
embed_db.upsert_texts(&docs_to_add).await.unwrap();
assert_eq!(
embed_db.items_count().await.unwrap(),
docs_to_add.len(),
"Expecting all added docs from table count"
);
let record_1 = embed_db.get_text_by_id("1").await.unwrap();
assert!(record_1.is_some());
assert_eq!("Hello world", record_1.unwrap().text)
}
async fn test_empty_db(embed_db: &EmbeddingsDb) {
let docs_to_add = get_texts();
embed_db.upsert_texts(&docs_to_add).await.unwrap();
assert_eq!(
embed_db.items_count().await.unwrap(),
docs_to_add.len(),
"Expecting all added texts from table count"
);
embed_db.empty_db().await.unwrap();
let count = embed_db.items_count().await.unwrap();
assert_eq!(count, 0);
}
async fn test_get_similar_texts(embed_db: &EmbeddingsDb) {
let docs_to_add = get_texts();
embed_db.upsert_texts(&docs_to_add).await.unwrap();
let search_doc = "Hello world";
let result = embed_db
.get_similar_to(search_doc)
.execute()
.await
.unwrap();
assert_eq!(
result.len(),
docs_to_add.len(),
"No limit so we should see all docs returned"
);
let result = embed_db
.get_similar_to(search_doc)
.limit(1)
.execute()
.await
.unwrap();
assert_eq!(result.len(), 1, "limit so we should only 1 doc returned");
assert_eq!(
result[0].id, "1",
"The compare doc and doc 1 share the same text so it should return"
);
let result = embed_db
.get_similar_to(search_doc)
.threshold(0.001)
.execute()
.await
.unwrap();
assert_eq!(
result.len(),
1,
"very small threshold, so we should only 1 doc returned"
);
assert_eq!(
result[0].id, "1",
"The compare doc and doc 1 share the same text so it should return"
);
assert_eq!(
result[0].distance, 0.0,
"the docs are identical so distance should be 0"
)
}
async fn test_delete_texts(embed_db: &EmbeddingsDb) {
let docs_to_add = get_texts();
// test delete 1
embed_db.upsert_texts(&docs_to_add).await.unwrap();
assert_eq!(
docs_to_add.len(),
embed_db.items_count().await.unwrap(),
"all added texts should be present"
);
let text_ids_to_delete = vec!["1".to_string()];
embed_db.delete_texts(&text_ids_to_delete).await.unwrap();
assert_eq!(
docs_to_add.len() - text_ids_to_delete.len(),
embed_db.items_count().await.unwrap()
);
// test delete multi
let new_texts = vec![
TextChunk {
id: "5".to_string(),
text: "This is five".to_string(),
},
TextChunk {
id: "6".to_string(),
text: "This is six".to_string(),
},
TextChunk {
id: "7".to_string(),
text: "This is seven".to_string(),
},
];
embed_db.upsert_texts(&new_texts).await.unwrap();
let db_item_count = embed_db.items_count().await.unwrap();
let text_ids_to_delete = vec!["6".to_string(), "7".to_string()];
embed_db.delete_texts(&text_ids_to_delete).await.unwrap();
assert_eq!(
db_item_count - text_ids_to_delete.len(),
embed_db.items_count().await.unwrap()
);
}
async fn test_upsert_texts(embed_db: &EmbeddingsDb) {
let docs_to_add = get_texts();
embed_db.upsert_texts(&docs_to_add).await.unwrap();
// upsert one item
embed_db
.upsert_texts(&[TextChunk {
id: "1".to_string(),
text: "Updated Text".to_string(),
}])
.await
.unwrap();
let updated_item = embed_db.get_text_by_id("1").await.unwrap().unwrap();
assert_eq!(updated_item.id, "1");
assert_eq!(updated_item.text, "Updated Text");
}
async fn test_get_all_texts(embed_db: &EmbeddingsDb) {
let docs_to_add = get_texts();
embed_db.upsert_texts(&docs_to_add).await.unwrap();
let all_texts = embed_db.get_all_texts().await.unwrap();
assert_eq!(all_texts.len(), docs_to_add.len());
}
}