use std::collections::{HashMap, HashSet};
use std::mem;
use std::ops::Deref;
use std::sync::Arc;
use std::time::{Instant, Duration};
use crate::{
api::Notification,
chain::SyncState as ChainSyncState,
};
use common_types::encoded;
use light::client::{AsLightClient, LightChainClient};
use light::net::{
PeerStatus, Announcement, Handler, BasicContext,
EventContext, Capabilities, ReqId, Status,
Error as NetError,
};
use light::request::{self, CompleteHeadersRequest as HeadersRequest};
use log::{debug, trace};
use network::PeerId;
use vapory_types::{H256, U256};
use parking_lot::{Mutex, RwLock};
use rand::{rngs::OsRng, seq::SliceRandom};
use futures::sync::mpsc;
use self::sync_round::{AbortReason, SyncRound, ResponseContext};
mod response;
mod sync_round;
#[cfg(test)]
mod tests;
const REQ_TIMEOUT_BASE: Duration = Duration::from_secs(7);
const REQ_TIMEOUT_PER_HEADER: Duration = Duration::from_millis(10);
#[derive(Debug, Clone, PartialEq, Eq)]
struct ChainInfo {
head_td: U256,
head_hash: H256,
head_num: u64,
}
impl PartialOrd for ChainInfo {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.head_td.partial_cmp(&other.head_td)
}
}
impl Ord for ChainInfo {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.head_td.cmp(&other.head_td)
}
}
struct Peer {
status: ChainInfo,
}
impl Peer {
fn new(chain_info: ChainInfo) -> Self {
Peer {
status: chain_info,
}
}
}
#[derive(Debug)]
enum AncestorSearch {
Queued(u64),
Awaiting(ReqId, u64, HeadersRequest),
Prehistoric,
FoundCommon(u64, H256),
Genesis,
}
impl AncestorSearch {
fn begin(best_num: u64) -> Self {
match best_num {
0 => AncestorSearch::Genesis,
_ => AncestorSearch::Queued(best_num),
}
}
fn process_response<L>(self, ctx: &dyn ResponseContext, client: &L) -> AncestorSearch
where L: AsLightClient
{
let client = client.as_light_client();
let first_num = client.chain_info().first_block_number.unwrap_or(0);
match self {
AncestorSearch::Awaiting(id, start, req) => {
if &id == ctx.req_id() {
match response::verify(ctx.data(), &req) {
Ok(headers) => {
for header in &headers {
if client.is_known(&header.hash()) {
debug!(target: "sync", "Found common ancestor with best chain");
return AncestorSearch::FoundCommon(header.number(), header.hash());
}
if header.number() < first_num {
debug!(target: "sync", "Prehistoric common ancestor with best chain.");
return AncestorSearch::Prehistoric;
}
}
let probe = start - headers.len() as u64;
if probe == 0 {
AncestorSearch::Genesis
} else {
AncestorSearch::Queued(probe)
}
}
Err(e) => {
trace!(target: "sync", "Bad headers response from {}: {}", ctx.responder(), e);
ctx.punish_responder();
AncestorSearch::Queued(start)
}
}
} else {
AncestorSearch::Awaiting(id, start, req)
}
}
other => other,
}
}
fn requests_abandoned(self, req_ids: &[ReqId]) -> AncestorSearch {
match self {
AncestorSearch::Awaiting(id, start, req) => {
if req_ids.iter().find(|&x| x == &id).is_some() {
AncestorSearch::Queued(start)
} else {
AncestorSearch::Awaiting(id, start, req)
}
}
other => other,
}
}
fn dispatch_request<F>(self, mut dispatcher: F) -> AncestorSearch
where F: FnMut(HeadersRequest) -> Option<ReqId>
{
const BATCH_SIZE: u64 = 64;
match self {
AncestorSearch::Queued(start) => {
let batch_size = ::std::cmp::min(start, BATCH_SIZE);
trace!(target: "sync", "Requesting {} reverse headers from {} to find common ancestor",
batch_size, start);
let req = HeadersRequest {
start: start.into(),
max: batch_size,
skip: 0,
reverse: true,
};
match dispatcher(req.clone()) {
Some(req_id) => AncestorSearch::Awaiting(req_id, start, req),
None => AncestorSearch::Queued(start),
}
}
other => other,
}
}
}
#[derive(Debug)]
enum SyncState {
Idle,
AncestorSearch(AncestorSearch),
Rounds(SyncRound),
}
#[derive(Debug)]
struct SyncStateWrapper {
state: SyncState,
}
impl SyncStateWrapper {
pub fn idle() -> Self {
SyncStateWrapper {
state: SyncState::Idle,
}
}
pub fn set(&mut self, state: SyncState, is_idle_handle: &mut bool) {
*is_idle_handle = match state {
SyncState::Idle => true,
_ => false,
};
self.state = state;
}
pub fn into_inner(self) -> SyncState {
self.state
}
}
impl Deref for SyncStateWrapper {
type Target = SyncState;
fn deref(&self) -> &SyncState {
&self.state
}
}
struct ResponseCtx<'a> {
peer: PeerId,
req_id: ReqId,
ctx: &'a dyn BasicContext,
data: &'a [encoded::Header],
}
impl<'a> ResponseContext for ResponseCtx<'a> {
fn responder(&self) -> PeerId { self.peer }
fn req_id(&self) -> &ReqId { &self.req_id }
fn data(&self) -> &[encoded::Header] { self.data }
fn punish_responder(&self) { self.ctx.disable_peer(self.peer) }
}
pub struct LightSync<L: AsLightClient> {
start_block_number: u64,
best_seen: Mutex<Option<ChainInfo>>,
peers: RwLock<HashMap<PeerId, Mutex<Peer>>>,
pending_reqs: Mutex<HashMap<ReqId, PendingReq>>,
client: Arc<L>,
rng: Mutex<OsRng>,
state: Mutex<SyncStateWrapper>,
senders: RwLock<Vec<mpsc::UnboundedSender<ChainSyncState>>>,
is_idle: Mutex<bool>,
}
#[derive(Debug, Clone)]
struct PendingReq {
started: Instant,
timeout: Duration,
}
impl<L: AsLightClient + Send + Sync> Handler for LightSync<L> {
fn on_connect(
&self,
ctx: &dyn EventContext,
status: &Status,
capabilities: &Capabilities
) -> PeerStatus {
use std::cmp;
if capabilities.serve_headers {
let chain_info = ChainInfo {
head_td: status.head_td,
head_hash: status.head_hash,
head_num: status.head_num,
};
{
let mut best = self.best_seen.lock();
*best = cmp::max(best.clone(), Some(chain_info.clone()));
}
self.peers.write().insert(ctx.peer(), Mutex::new(Peer::new(chain_info)));
self.maintain_sync(ctx.as_basic());
PeerStatus::Kept
} else {
PeerStatus::Unkept
}
}
fn on_disconnect(&self, ctx: &dyn EventContext, unfulfilled: &[ReqId]) {
let peer_id = ctx.peer();
let peer = match self.peers.write().remove(&peer_id).map(|p| p.into_inner()) {
Some(peer) => peer,
None => return,
};
trace!(target: "sync", "peer {} disconnecting", peer_id);
let new_best = {
let mut best = self.best_seen.lock();
if best.as_ref().map_or(false, |b| b == &peer.status) {
let next_best: Option<ChainInfo> = self.peers.read().values()
.map(|p| p.lock().status.clone())
.map(Some)
.fold(None, ::std::cmp::max);
*best = next_best;
}
best.clone()
};
{
let mut pending_reqs = self.pending_reqs.lock();
for unfulfilled in unfulfilled {
pending_reqs.remove(&unfulfilled);
}
}
if new_best.is_none() {
debug!(target: "sync", "No peers remain. Reverting to idle");
self.set_state(&mut self.state.lock(), SyncState::Idle);
} else {
let mut state = self.state.lock();
let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() {
SyncState::Idle => SyncState::Idle,
SyncState::AncestorSearch(search) =>
SyncState::AncestorSearch(search.requests_abandoned(unfulfilled)),
SyncState::Rounds(round) => SyncState::Rounds(round.requests_abandoned(unfulfilled)),
};
self.set_state(&mut state, next_state);
}
self.maintain_sync(ctx.as_basic());
}
fn on_announcement(&self, ctx: &dyn EventContext, announcement: &Announcement) {
let (last_td, chain_info) = {
let peers = self.peers.read();
match peers.get(&ctx.peer()) {
None => return,
Some(peer) => {
let mut peer = peer.lock();
let last_td = peer.status.head_td;
peer.status = ChainInfo {
head_td: announcement.head_td,
head_hash: announcement.head_hash,
head_num: announcement.head_num,
};
(last_td, peer.status.clone())
}
}
};
trace!(target: "sync", "Announcement from peer {}: new chain head {:?}, reorg depth {}",
ctx.peer(), (announcement.head_hash, announcement.head_num), announcement.reorg_depth);
if last_td > announcement.head_td {
trace!(target: "sync", "Peer {} moved backwards.", ctx.peer());
self.peers.write().remove(&ctx.peer());
ctx.disconnect_peer(ctx.peer());
return
}
{
let mut best = self.best_seen.lock();
*best = ::std::cmp::max(best.clone(), Some(chain_info));
}
self.maintain_sync(ctx.as_basic());
}
fn on_responses(&self, ctx: &dyn EventContext, req_id: ReqId, responses: &[request::Response]) {
let peer = ctx.peer();
if !self.peers.read().contains_key(&peer) {
return
}
if self.pending_reqs.lock().remove(&req_id).is_none() {
return
}
let headers = match responses.get(0) {
Some(&request::Response::Headers(ref response)) => &response.headers[..],
Some(_) => {
trace!("Disabling peer {} for wrong response type.", peer);
ctx.disable_peer(peer);
&[]
}
None => &[],
};
{
let mut state = self.state.lock();
let ctx = ResponseCtx {
peer: ctx.peer(),
req_id: req_id,
ctx: ctx.as_basic(),
data: headers,
};
let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() {
SyncState::Idle => SyncState::Idle,
SyncState::AncestorSearch(search) =>
SyncState::AncestorSearch(search.process_response(&ctx, &*self.client)),
SyncState::Rounds(round) => SyncState::Rounds(round.process_response(&ctx)),
};
self.set_state(&mut state, next_state);
}
self.maintain_sync(ctx.as_basic());
}
fn tick(&self, ctx: &dyn BasicContext) {
self.maintain_sync(ctx);
}
}
impl<L: AsLightClient> LightSync<L> {
fn set_state(&self, state: &mut SyncStateWrapper, next_state: SyncState) {
match next_state {
SyncState::Idle => self.notify_senders(ChainSyncState::Idle),
_ => self.notify_senders(ChainSyncState::Blocks)
};
state.set(next_state, &mut self.is_idle.lock());
}
fn notify_senders(&self, state: ChainSyncState) {
self.senders.write().retain(|sender| {
sender.unbounded_send(state).is_ok()
})
}
fn begin_search(&self, state: &mut SyncStateWrapper) {
if let None = *self.best_seen.lock() {
self.set_state(state, SyncState::Idle);
return;
}
self.client.as_light_client().flush_queue();
let chain_info = self.client.as_light_client().chain_info();
trace!(target: "sync", "Beginning search for common ancestor from {:?}",
(chain_info.best_block_number, chain_info.best_block_hash));
let next_state = SyncState::AncestorSearch(AncestorSearch::begin(chain_info.best_block_number));
self.set_state(state, next_state);
}
fn maintain_sync(&self, ctx: &dyn BasicContext) {
use common_types::errors::{VapcoreError, ImportError};
const DRAIN_AMOUNT: usize = 128;
let client = self.client.as_light_client();
let chain_info = client.chain_info();
let mut state = self.state.lock();
debug!(target: "sync", "Maintaining sync ({:?})", **state);
{
let mut sink = Vec::with_capacity(DRAIN_AMOUNT);
'a:
loop {
if client.queue_info().is_full() { break }
let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() {
SyncState::Rounds(round)
=> SyncState::Rounds(round.drain(&mut sink, Some(DRAIN_AMOUNT))),
other => other,
};
self.set_state(&mut state, next_state);
if sink.is_empty() { break }
trace!(target: "sync", "Drained {} headers to import", sink.len());
for header in sink.drain(..) {
match client.queue_header(header) {
Ok(_) => {}
Err(VapcoreError::Import(ImportError::AlreadyInChain)) => {
trace!(target: "sync", "Block already in chain. Continuing.");
},
Err(VapcoreError::Import(ImportError::AlreadyQueued)) => {
trace!(target: "sync", "Block already queued. Continuing.");
},
Err(e) => {
debug!(target: "sync", "Found bad header ({:?}). Reset to search state.", e);
self.begin_search(&mut state);
break 'a;
}
}
}
}
}
{
let best_td = chain_info.pending_total_difficulty;
let sync_target = match *self.best_seen.lock() {
Some(ref target) if target.head_td > best_td => (target.head_num, target.head_hash),
ref other => {
let network_score = other.as_ref().map(|target| target.head_td);
trace!(target: "sync", "No target to sync to. Network score: {:?}, Local score: {:?}",
network_score, best_td);
self.set_state(&mut state, SyncState::Idle);
return;
}
};
match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() {
SyncState::Rounds(SyncRound::Abort(reason, remaining)) => {
if remaining.len() > 0 {
self.set_state(&mut state, SyncState::Rounds(SyncRound::Abort(reason, remaining)));
return;
}
match reason {
AbortReason::BadScaffold(bad_peers) => {
debug!(target: "sync", "Disabling peers responsible for bad scaffold");
for peer in bad_peers {
ctx.disable_peer(peer);
}
}
AbortReason::NoResponses => {}
AbortReason::TargetReached => {
debug!(target: "sync", "Sync target reached. Going idle");
self.set_state(&mut state, SyncState::Idle);
return;
}
}
debug!(target: "sync", "Beginning search after aborted sync round");
self.begin_search(&mut state);
}
SyncState::AncestorSearch(AncestorSearch::FoundCommon(num, hash)) => {
self.set_state(&mut state, SyncState::Rounds(SyncRound::begin((num, hash), sync_target)));
}
SyncState::AncestorSearch(AncestorSearch::Genesis) => {
let g_hash = chain_info.genesis_hash;
self.set_state(&mut state, SyncState::Rounds(SyncRound::begin((0, g_hash), sync_target)));
}
SyncState::Idle => self.begin_search(&mut state),
other => self.set_state(&mut state, other),
}
}
{
let mut pending_reqs = self.pending_reqs.lock();
let mut unfulfilled = Vec::new();
for (req_id, info) in pending_reqs.iter() {
if info.started.elapsed() >= info.timeout {
debug!(target: "sync", "{} timed out", req_id);
unfulfilled.push(req_id.clone());
}
}
if !unfulfilled.is_empty() {
for unfulfilled in unfulfilled.iter() {
pending_reqs.remove(unfulfilled);
}
drop(pending_reqs);
let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() {
SyncState::Idle => SyncState::Idle,
SyncState::AncestorSearch(search) =>
SyncState::AncestorSearch(search.requests_abandoned(&unfulfilled)),
SyncState::Rounds(round) => SyncState::Rounds(round.requests_abandoned(&unfulfilled)),
};
self.set_state(&mut state, next_state);
}
}
{
let peers = self.peers.read();
let mut peer_ids: Vec<_> = peers.iter().filter_map(|(id, p)| {
if p.lock().status.head_td > chain_info.pending_total_difficulty {
Some(*id)
} else {
None
}
}).collect();
let mut rng = self.rng.lock();
let mut requested_from = HashSet::new();
let dispatcher = move |req: HeadersRequest| {
peer_ids.shuffle(&mut *rng);
let request = {
let mut builder = request::Builder::default();
builder.push(request::Request::Headers(request::IncompleteHeadersRequest {
start: req.start.into(),
skip: req.skip,
max: req.max,
reverse: req.reverse,
})).expect("request provided fully complete with no unresolved back-references; qed");
builder.build()
};
for peer in &peer_ids {
if requested_from.contains(peer) { continue }
match ctx.request_from(*peer, request.clone()) {
Ok(id) => {
assert!(req.max <= u32::max_value() as u64,
"requesting more than 2^32 headers at a time would overflow");
let timeout = REQ_TIMEOUT_BASE + REQ_TIMEOUT_PER_HEADER * req.max as u32;
self.pending_reqs.lock().insert(id.clone(), PendingReq {
started: Instant::now(),
timeout,
});
requested_from.insert(peer.clone());
return Some(id)
}
Err(NetError::NoCredits) => {}
Err(e) =>
trace!(target: "sync", "Error requesting headers from viable peer: {}", e),
}
}
None
};
let next_state = match mem::replace(&mut *state, SyncStateWrapper::idle()).into_inner() {
SyncState::Rounds(round) =>
SyncState::Rounds(round.dispatch_requests(dispatcher)),
SyncState::AncestorSearch(search) =>
SyncState::AncestorSearch(search.dispatch_request(dispatcher)),
other => other,
};
self.set_state(&mut state, next_state);
}
}
fn sync_notification(&self) -> Notification<ChainSyncState> {
let (sender, receiver) = futures::sync::mpsc::unbounded();
self.senders.write().push(sender);
receiver
}
}
impl<L: AsLightClient> LightSync<L> {
pub fn new(client: Arc<L>) -> Result<Self, ::std::io::Error> {
Ok(LightSync {
start_block_number: client.as_light_client().chain_info().best_block_number,
best_seen: Mutex::new(None),
peers: RwLock::new(HashMap::new()),
pending_reqs: Mutex::new(HashMap::new()),
client: client,
rng: Mutex::new(OsRng),
senders: RwLock::new(Vec::new()),
state: Mutex::new(SyncStateWrapper::idle()),
is_idle: Mutex::new(true),
})
}
}
pub trait SyncInfo {
fn highest_block(&self) -> Option<u64>;
fn start_block(&self) -> u64;
fn is_major_importing(&self) -> bool;
fn sync_notification(&self) -> Notification<ChainSyncState>;
}
impl<L: AsLightClient> SyncInfo for LightSync<L> {
fn highest_block(&self) -> Option<u64> {
self.best_seen.lock().as_ref().map(|x| x.head_num)
}
fn start_block(&self) -> u64 {
self.start_block_number
}
fn is_major_importing(&self) -> bool {
const EMPTY_QUEUE: usize = 3;
let queue_info = self.client.as_light_client().queue_info();
let is_verifying = queue_info.unverified_queue_size + queue_info.verified_queue_size > EMPTY_QUEUE;
let is_syncing = !*self.is_idle.lock();
is_verifying || is_syncing
}
fn sync_notification(&self) -> Notification<ChainSyncState> {
self.sync_notification()
}
}