1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
use std::{
    cell::UnsafeCell,
    collections::{HashMap, HashSet, VecDeque},
    rc::Rc,
};

use crate::{decoder::*, perf::PerfCounter};
use petgraph::visit::EdgeRef;

/// Maps node indices to and back from the DFS order.
struct PostOrder {
    // Node index to the order in which they're iterated
    index_to_order: Vec<usize>,
    // Order in which nodes are iterated to the node index
    order_to_index: Vec<usize>,
}

struct DominatedNodes {
    first_dom_node_index: Vec<usize>,
    dominated_nodes: Vec<usize>,
}

struct Retaining {
    nodes: Vec<usize>,
    edges: Vec<usize>,
    first_retainer: Vec<usize>,
    first_edge: Vec<usize>,
}

#[derive(Clone)]
pub struct ClassGroup {
    pub index: usize,
    pub self_size: u64,
    pub retained_size: u64,
    pub nodes: Vec<usize>,
}

#[cfg(target_arch = "wasm32")]
use wasm_bindgen::prelude::*;

#[cfg_attr(target_arch = "wasm32", wasm_bindgen)]
pub struct Graph {
    // Much of the code in the Graph is based on that in the Chrome DevTools
    // (see LICENSE). We used Github Copilot to do the bulk of the translation from
    // TypeScript to Rust, with ample hand-editing afterwards. Chrome DevTools
    // prefers to store all node/edge information in equivalently-lengthed arrays,
    // which makes V8 very happy. In native code, we can do things a little more
    // efficiently, but there's still chunks of the graph that mirror devtools and
    // could be made more idiomatic.
    pub(crate) inner: Rc<PetGraph>,
    pub root_index: usize,
    strings: Rc<Vec<String>>,
    dominators: UnsafeCell<Option<Vec<usize>>>,
    retained_sizes: UnsafeCell<Option<Vec<u64>>>,
    flags: UnsafeCell<Option<Flags>>,
    retainers: UnsafeCell<Option<Retaining>>,
    post_order: UnsafeCell<Option<PostOrder>>,
    dominated_nodes: UnsafeCell<Option<DominatedNodes>>,
    class_groups: UnsafeCell<Option<Vec<ClassGroup>>>,
}

mod flag {
    pub const CAN_BE_QUERIED: u8 = 1 << 0;
    pub const DETACHED_DOM_TREE_NODE: u8 = 1 << 1;
    pub const PAGE_OBJECT: u8 = 1 << 2;
}

struct Flags(Vec<u8>);

impl Flags {
    pub fn test(&self, index: usize, flag: u8) -> bool {
        (self.0[index] & flag) != 0
    }
}

impl Graph {
    pub(crate) fn new(inner: PetGraph, root_index: usize, strings: Rc<Vec<String>>) -> Self {
        Self {
            inner: Rc::new(inner),
            root_index,
            strings,
            dominators: UnsafeCell::new(None),
            retained_sizes: UnsafeCell::new(None),
            retainers: UnsafeCell::new(None),
            post_order: UnsafeCell::new(None),
            flags: UnsafeCell::new(None),
            dominated_nodes: UnsafeCell::new(None),
            class_groups: UnsafeCell::new(None),
        }
    }

    /// Gets a list of all nodes in the graph.
    pub fn nodes(&self) -> &[petgraph::graph::Node<Node>] {
        self.inner.raw_nodes()
    }

    /// Gets a node by its index.
    pub fn get_node(&self, index: usize) -> Option<&Node> {
        self.inner.raw_nodes().get(index).map(|n| &n.weight)
    }

    /// Gets a string by its index. Indexed strings are exposed in the 'Other'
    /// type in Node and Edge types.
    pub fn get_indexed_string(&self, index: usize) -> Option<&str> {
        self.strings.get(index).map(|s| s.as_str())
    }

    pub(crate) fn graph(&self) -> &PetGraph {
        &self.inner
    }

    /// Gets an iterator over the graph nodes.
    pub fn iter(&self) -> NodeIterator<'_> {
        NodeIterator {
            graph: self.graph(),
            index: 0,
        }
    }

    /// Gets a list children of the node at the given index.
    pub fn children(&self, parent: usize) -> Vec<usize> {
        let graph = self.graph();

        graph
            .neighbors(petgraph::graph::NodeIndex::new(parent))
            .map(|n| n.index())
            .collect()
    }

    /// Gets the retained size of a node in the graph. This is the size this
    /// node specifically requires the program to retain., i.e. the nodes
    /// the given node dominates <https://en.wikipedia.org/wiki/Dominator_(graph_theory)>
    pub fn retained_size(&self, node_index: usize) -> u64 {
        let retained_sizes = unsafe { &mut *self.retained_sizes.get() };

        if retained_sizes.is_none() {
            let graph = self.graph();
            let post_order = &self.get_post_order().order_to_index;
            let dom = self.get_dominators();
            let _perf = PerfCounter::new("build_retained_sizes");

            let mut rs = Vec::with_capacity(graph.node_count());
            for n in self.graph().raw_nodes() {
                rs.push(n.weight.self_size);
            }

            for i in post_order.iter() {
                if *i != self.root_index {
                    rs[dom[*i]] += rs[*i];
                }
            }

            *retained_sizes = Some(rs);
        }

        retained_sizes.as_ref().unwrap()[node_index]
    }

    fn get_dominated_nodes(&self) -> &DominatedNodes {
        let dominated_nodes_o = unsafe { &mut *self.dominated_nodes.get() };

        if dominated_nodes_o.is_none() {
            let dominators_tree = self.get_dominators();
            let _perf = PerfCounter::new("build_dominated_nodes");
            let graph = self.graph();
            let mut dominated_nodes = vec![0; graph.node_count()];
            let mut first_dom_node_index = vec![0; graph.node_count() + 1];

            let range = match self.root_index {
                0 => 1..graph.node_count(),
                i if i == graph.node_count() - 1 => 0..graph.node_count() - 1,
                i => panic!("expected root index to be first or last, was {}", i),
            };

            // clone the range as it's used again later
            for node_index in range.clone() {
                first_dom_node_index[dominators_tree[node_index]] += 1;
            }

            let mut first_dominated_node_index = 0;
            #[allow(clippy::needless_range_loop)]
            for i in 0..graph.node_count() {
                let dominated_count = first_dom_node_index[i];
                if i < graph.node_count() - 1 {
                    dominated_nodes[first_dominated_node_index] = dominated_count;
                }
                first_dom_node_index[i] = first_dominated_node_index;
                first_dominated_node_index += dominated_count;
            }
            first_dom_node_index[graph.node_count()] = dominated_nodes.len() - 1;

            for node_index in range {
                let dominator_ordinal = dominators_tree[node_index];
                let mut dominated_ref_index = first_dom_node_index[dominator_ordinal];
                dominated_nodes[dominated_ref_index] -= 1;
                dominated_ref_index += dominated_nodes[dominated_ref_index];
                dominated_nodes[dominated_ref_index] = node_index;
            }

            *dominated_nodes_o = Some(DominatedNodes {
                dominated_nodes,
                first_dom_node_index,
            });
        }

        dominated_nodes_o.as_ref().unwrap()
    }

    /// Gets top-level groups for classes to show in a summary view. Sorted by
    /// retained size descending by default.
    pub fn get_class_groups(&self, no_retained: bool) -> &[ClassGroup] {
        let class_groups = unsafe { &mut *self.class_groups.get() };

        if class_groups.is_none() {
            let nodes = self.nodes();
            let mut groups = HashMap::new();
            for (index, node) in nodes.iter().enumerate() {
                let name = node.weight.class_name();
                let group = groups.entry(name).or_insert(ClassGroup {
                    index,
                    self_size: 0,
                    retained_size: 0,
                    nodes: vec![],
                });

                group.self_size += node.weight.self_size;
                group.nodes.push(index);
            }

            if !no_retained {
                let dominators = self.get_dominated_nodes();
                let _perf = PerfCounter::new("build_class_groups");
                let mut queue = VecDeque::new();
                let mut sizes = vec![-1];
                let mut classes = vec![];
                queue.push_back(self.root_index);

                let mut seen_groups: HashSet<&str> = HashSet::new();
                while let Some(node_index) = queue.pop_back() {
                    let node = &nodes[node_index];
                    let name = node.weight.class_name();
                    let seen = seen_groups.contains(name);

                    let dominated_index_from = dominators.first_dom_node_index[node_index];
                    let dominated_index_to = dominators.first_dom_node_index[node_index + 1];

                    if !seen
                        && (node.weight.self_size != 0
                            || matches!(node.weight.typ, NodeType::Native))
                    {
                        // group must eexist from built groups above
                        let group = groups.get_mut(name).unwrap();
                        group.retained_size += self.retained_size(node_index);
                        if dominated_index_from != dominated_index_to {
                            seen_groups.insert(name);
                            sizes.push(queue.len() as isize);
                            classes.push(name);
                        }
                    }

                    for i in dominated_index_from..dominated_index_to {
                        queue.push_back(dominators.dominated_nodes[i]);
                    }

                    let l = queue.len();
                    while sizes.last().copied() == Some(l as isize) {
                        sizes.pop();
                        seen_groups.remove(classes.pop().unwrap());
                    }
                }
            }

            let mut groups: Vec<_> = groups.into_values().collect();
            groups.sort_by_key(|g| std::cmp::Reverse(g.retained_size));
            *class_groups = Some(groups);
        }

        class_groups.as_ref().unwrap()
    }

    fn get_retainers(&self) -> &Retaining {
        let retaining = unsafe { &mut *self.retainers.get() };

        if retaining.is_none() {
            let _perf = PerfCounter::new("build_retainers");
            let graph = self.graph();
            let mut r = Retaining {
                edges: vec![0; graph.edge_count()],
                nodes: vec![0; graph.edge_count()],
                first_retainer: vec![0; graph.node_count() + 1],
                first_edge: vec![0; graph.node_count() + 1],
            };

            r.first_edge[graph.node_count()] = graph.edge_count();
            let mut edge_index = 0;
            for (i, node) in graph.raw_nodes().iter().enumerate() {
                r.first_edge[i] = edge_index;
                edge_index += node.weight.edge_count;
            }

            for edge in graph.raw_edges() {
                r.first_retainer[edge.target().index()] += 1;
            }

            let mut first_unused_retainer_slot = 0;
            for i in 0..graph.node_count() {
                let retainers_count = r.first_retainer[i];
                r.first_retainer[i] = first_unused_retainer_slot;
                r.nodes[first_unused_retainer_slot] = retainers_count;
                first_unused_retainer_slot += retainers_count;
            }
            r.first_retainer[graph.node_count()] = r.nodes.len();

            for node in graph.node_indices() {
                for edge in graph.edges(node) {
                    let first_retainer_slot_index = r.first_retainer[edge.target().index()];
                    r.nodes[first_retainer_slot_index] -= 1;
                    let next_unused_retainer_slot_index =
                        first_retainer_slot_index + r.nodes[first_retainer_slot_index];
                    r.nodes[next_unused_retainer_slot_index] = node.index();
                    r.edges[next_unused_retainer_slot_index] = edge.id().index();
                }
            }

            *retaining = Some(r);
        }

        retaining.as_ref().unwrap()
    }

    fn get_dominators(&self) -> &Vec<usize> {
        let dominators = unsafe { &mut *self.dominators.get() };
        if dominators.is_none() {
            *dominators = Some(self.build_dominators());
        }

        dominators.as_ref().unwrap()
    }

    pub(crate) fn is_essential_edge(&self, index: usize, typ: &EdgeType) -> bool {
        if let EdgeType::Weak = typ {
            return false;
        }
        if let EdgeType::Shortcut = typ {
            return index == self.root_index;
        }

        true
    }

    /// Gets the flags of metadata for the graph.
    fn get_flags(&self) -> &Flags {
        let flags = unsafe { &mut *self.flags.get() };

        if flags.is_none() {
            let _perf = PerfCounter::new("build_flags");
            let mut f = vec![0; self.graph().node_count()];
            self.mark_detached_dom_tree_nodes(&mut f);
            self.mark_queriable_heap_objects(&mut f);
            self.mark_page_owned_nodes(&mut f);
            *flags = Some(Flags(f));
        }

        flags.as_ref().unwrap()
    }

    fn mark_detached_dom_tree_nodes(&self, flags: &mut [u8]) {
        for (index, node) in self.graph().raw_nodes().iter().enumerate() {
            if let NodeType::Native = node.weight.typ {
                if node.weight.name().starts_with("Detached ") {
                    flags[index] |= flag::DETACHED_DOM_TREE_NODE;
                }
            }
        }
    }

    fn mark_queriable_heap_objects(&self, flags: &mut [u8]) {
        let graph = self.graph();
        let mut list = VecDeque::new();
        let retained = self.get_retainers();

        while let Some(node_index) = list.pop_front() {
            if flags[node_index] & flag::CAN_BE_QUERIED != 0 {
                continue;
            }
            flags[node_index] |= flag::CAN_BE_QUERIED;
            let begin_edge = retained.first_edge[node_index];
            let end_edge = retained.first_edge[node_index + 1];
            for edge in graph.raw_edges()[begin_edge..end_edge].iter() {
                if flags[edge.target().index()] & flag::CAN_BE_QUERIED != 0 {
                    continue;
                }
                let typ = edge.weight.typ;
                if matches!(
                    typ,
                    EdgeType::Hidden | EdgeType::Internal | EdgeType::Invisible | EdgeType::Weak
                ) {
                    continue;
                }
                list.push_back(edge.target().index());
            }
        }
    }

    fn mark_page_owned_nodes(&self, flags: &mut [u8]) {
        let retainers = self.get_retainers();
        let graph = self.graph();
        let node_count = graph.raw_nodes().len();
        let mut nodes_to_visit = vec![0; node_count];
        let mut nodes_to_visit_length = 0;

        // Populate the entry points. They are Window objects and DOM Tree Roots.
        for edge_index in
            retainers.first_edge[self.root_index]..retainers.first_edge[self.root_index + 1]
        {
            let edge = &graph.raw_edges()[edge_index];
            if edge.weight.typ == EdgeType::Element {
                if !graph[edge.target()].is_document_dom_trees_root() {
                    continue;
                }
            } else if edge.weight.typ != EdgeType::Shortcut {
                continue;
            }

            nodes_to_visit[nodes_to_visit_length] = edge.target().index();
            flags[edge.target().index()] |= flag::PAGE_OBJECT;
            nodes_to_visit_length += 1;
        }

        // Mark everything reachable with the pageObject flag.
        while nodes_to_visit_length > 0 {
            let node_ordinal = nodes_to_visit[nodes_to_visit_length - 1];
            nodes_to_visit_length -= 1;

            let edge_begin = retainers.first_edge[node_ordinal];
            let edge_end = retainers.first_edge[node_ordinal + 1];
            for edge in graph.raw_edges()[edge_begin..edge_end].iter() {
                let child_index = edge.target().index();
                if flags[child_index] & flag::PAGE_OBJECT != 0 {
                    continue;
                }
                if edge.weight.typ == EdgeType::Weak {
                    continue;
                }
                nodes_to_visit[nodes_to_visit_length] = child_index;
                flags[child_index] |= flag::PAGE_OBJECT;
                nodes_to_visit_length += 1;
            }
        }
    }

    /// Gets information about the DFS order of nodes in the tree.
    fn get_post_order(&self) -> &PostOrder {
        let post_order = unsafe { &mut *self.post_order.get() };
        if post_order.is_none() {
            *post_order = Some(self.build_post_order());
        }

        post_order.as_ref().unwrap()
    }

    fn build_post_order(&self) -> PostOrder {
        let retainers = self.get_retainers();
        let _perf = PerfCounter::new("build_post_order");
        let graph = self.graph();
        let node_count = graph.raw_nodes().len();
        let flags = self.get_flags();
        let mut stack_nodes = vec![0; node_count];
        let mut stack_current_edge = vec![0; node_count];
        let mut order_to_index = vec![0; node_count];
        let mut index_to_order = vec![0; node_count];
        let mut visited = vec![false; node_count];
        let mut post_order_index = 0;

        let mut stack_top = 0;
        stack_nodes[0] = self.root_index;
        stack_current_edge[0] = retainers.first_edge[self.root_index];
        visited[self.root_index] = true;

        let mut iteration = 0;
        loop {
            iteration += 1;
            loop {
                let node_index = stack_nodes[stack_top];
                let edge_index = stack_current_edge[stack_top];
                let edges_end = retainers.first_edge[node_index + 1];

                if edge_index < edges_end {
                    stack_current_edge[stack_top] += 1;
                    let edge = &graph.raw_edges()[edge_index];
                    if !self.is_essential_edge(node_index, &edge.weight.typ) {
                        continue;
                    }
                    let child_node_index = edge.target().index();
                    if visited[child_node_index] {
                        continue;
                    }

                    if node_index != self.root_index
                        && flags.test(child_node_index, flag::PAGE_OBJECT)
                        && !flags.test(node_index, flag::PAGE_OBJECT)
                    {
                        continue;
                    }

                    stack_top += 1;
                    stack_nodes[stack_top] = child_node_index;
                    stack_current_edge[stack_top] = retainers.first_edge[child_node_index];
                    visited[child_node_index] = true;
                } else {
                    index_to_order[node_index] = post_order_index;
                    order_to_index[post_order_index] = node_index;
                    post_order_index += 1;

                    if stack_top == 0 {
                        break;
                    }

                    stack_top -= 1;
                }
            }

            if post_order_index == node_count || iteration > 1 {
                break;
            }

            post_order_index -= 1;
            stack_top = 0;
            stack_nodes[0] = self.root_index;
            stack_current_edge[0] = retainers.first_edge[self.root_index + 1];

            for (i, did_visit) in visited.iter_mut().enumerate() {
                if *did_visit || !self.has_only_weak_retainers(i) {
                    continue;
                }

                stack_top += 1;
                stack_nodes[stack_top] = i;
                stack_current_edge[stack_top] = retainers.first_edge[i];
                *did_visit = true;
            }
        }

        if post_order_index != node_count {
            post_order_index -= 1;
            for i in 0..node_count {
                if visited[i] {
                    continue;
                }
                index_to_order[i] = post_order_index;
                order_to_index[post_order_index] = i;
                post_order_index += 1;
            }
            index_to_order[self.root_index] = post_order_index;
            order_to_index[post_order_index] = self.root_index;
        }

        PostOrder {
            index_to_order,
            order_to_index,
        }
    }

    fn build_dominators(&self) -> Vec<usize> {
        let post_order = self.get_post_order();
        let graph = self.graph();

        let flags = self.get_flags();
        let retaining = self.get_retainers();
        let nodes_count = self.nodes().len();
        let root_post_ordered_index = nodes_count - 1;
        let no_entry = nodes_count;
        let mut dominators = vec![no_entry; nodes_count];
        dominators[root_post_ordered_index] = root_post_ordered_index;
        let _perf = PerfCounter::new("build_dominators");

        // The affected vector is used to mark entries which dominators
        // have to be recalculated because of changes in their retainers.
        let mut affected: Vec<u8> = vec![0; nodes_count];

        // Mark the root direct children as affected.
        {
            let begin_index = retaining.first_edge[self.root_index];
            let end_index = retaining.first_edge[self.root_index + 1];
            for edge in graph.raw_edges()[begin_index..end_index].iter() {
                if !self.is_essential_edge(self.root_index, &edge.weight.typ) {
                    continue;
                }

                let index = post_order.index_to_order[edge.target().index()];
                affected[index] = 1;
            }
        }

        let mut changed = true;
        while changed {
            changed = false;
            for i in 0..root_post_ordered_index {
                let post_order_index = root_post_ordered_index - (i + 1);
                if affected[post_order_index] == 0 {
                    continue;
                }
                affected[post_order_index] = 0;
                if dominators[post_order_index] == root_post_ordered_index {
                    continue;
                }
                let node_index = post_order.order_to_index[post_order_index];
                let mut new_dominator_index = no_entry;
                let begin_retainer_index = retaining.first_retainer[node_index];
                let end_retainer_index = retaining.first_retainer[node_index + 1];
                let mut orphan_node = true;
                for retainer_index in begin_retainer_index..end_retainer_index {
                    let retainer_edge_index = retaining.edges[retainer_index];
                    let retainer_edge_type = &graph.raw_edges()[retainer_edge_index].weight.typ;
                    let retainer_node_index = retaining.nodes[retainer_index];
                    if !self.is_essential_edge(retainer_node_index, retainer_edge_type) {
                        continue;
                    }
                    orphan_node = false;
                    if retainer_node_index != self.root_index
                        && flags.test(node_index, flag::PAGE_OBJECT)
                        && !flags.test(retainer_node_index, flag::PAGE_OBJECT)
                    {
                        continue;
                    }
                    let mut retainer_post_order_index =
                        post_order.index_to_order[retainer_node_index];
                    if dominators[retainer_post_order_index] != no_entry {
                        if new_dominator_index == no_entry {
                            new_dominator_index = retainer_post_order_index;
                        } else {
                            while retainer_post_order_index != new_dominator_index {
                                while retainer_post_order_index < new_dominator_index {
                                    retainer_post_order_index =
                                        dominators[retainer_post_order_index];
                                }
                                while new_dominator_index < retainer_post_order_index {
                                    new_dominator_index = dominators[new_dominator_index];
                                }
                            }
                        }
                        if new_dominator_index == root_post_ordered_index {
                            break;
                        }
                    }
                }
                if orphan_node {
                    new_dominator_index = root_post_ordered_index;
                }
                if new_dominator_index != no_entry
                    && dominators[post_order_index] != new_dominator_index
                {
                    dominators[post_order_index] = new_dominator_index;
                    let node_index = post_order.order_to_index[post_order_index];
                    changed = true;
                    let begin_index = retaining.first_edge[node_index];
                    let end_index = retaining.first_edge[node_index + 1];
                    for edge in graph.raw_edges()[begin_index..end_index].iter() {
                        affected[post_order.index_to_order[edge.target().index()]] = 1;
                    }
                }
            }
        }

        let mut dominators_tree = vec![0; nodes_count];
        for (post_order_index, dominated_by) in dominators.into_iter().enumerate() {
            let node_index = post_order.order_to_index[post_order_index];
            // detached nodes are not in the dominators tree, so have them be
            // dominated solely by the root.
            dominators_tree[node_index] = post_order
                .order_to_index
                .get(dominated_by)
                .copied()
                .unwrap_or(self.root_index);
        }

        dominators_tree
    }

    fn has_only_weak_retainers(&self, node_index: usize) -> bool {
        let ret = self.get_retainers();
        let graph = self.graph();
        for retainer in ret.first_retainer[node_index]..ret.first_retainer[node_index + 1] {
            if let Some(e) = graph.edge_weight(petgraph::graph::EdgeIndex::new(ret.edges[retainer]))
            {
                if !matches!(e.typ, EdgeType::Weak | EdgeType::Shortcut) {
                    return false;
                }
            }
        }

        true
    }
}

pub struct NodeIterator<'graph> {
    graph: &'graph PetGraph,
    index: usize,
}

impl<'graph> Iterator for NodeIterator<'graph> {
    type Item = &'graph Node;

    fn next(&mut self) -> Option<Self::Item> {
        let n = self.graph.raw_nodes().get(self.index).map(|n| &n.weight);
        self.index += 1;
        n
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fs;

    #[test]
    fn test_retained_sizes() {
        let contents = fs::read("test/basic.heapsnapshot").unwrap();
        let graph = decode_slice(&contents).expect("expect no errors");

        let mut groups = graph.get_class_groups(false).to_vec();
        groups.sort_by_key(|g| std::cmp::Reverse(g.retained_size));

        let mut actual = String::new();
        for group in groups.iter().take(10) {
            actual.push_str(&format!(
                "{} {} {}\n",
                group.retained_size,
                group.nodes.len(),
                graph.get_node(group.index).unwrap().class_name()
            ));
        }

        assert_eq!(
            actual,
            "3413384 18983 (compiled code)
2347408 13774 (string)
2301824 6714 (closure)
1555120 1186 (array)
1396568 811 Object
1266788 757 system / Context
985128 12345 (system)
651840 29 Map
340240 322 BuiltinModule
325872 3 global
"
        );
    }
}