logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
use std::rc::Rc;

use crate::engine::d2::{animation::AnimatedFloat, math::Math};

use super::{EmitterMold, EmitterType, Graphics, Sprite, Texture};

/// A sprite that displays a particle system.
#[derive(Default, Clone, Debug)]
pub struct EmitterSprite {
    pub inner: Sprite,
    /// The particle texture, must be square.
    pub texture: Option<Rc<dyn Texture>>,

    /// The current number of particles being shown.
    pub num_particles: usize,

    pub max_particles: i32,

    pub type_: EmitterType,

    /// How long the emitter should remain enabled, or <= 0 to never expire.
    pub duration: f32,

    /// Whether new particles are being actively emitted.
    pub enabled: bool, // = true;

    pub emit_x: AnimatedFloat,
    pub emit_x_variance: AnimatedFloat,

    pub emit_y: AnimatedFloat,
    pub emit_y_variance: AnimatedFloat,

    pub alpha_start: AnimatedFloat,
    pub alpha_start_variance: AnimatedFloat,

    pub alpha_end: AnimatedFloat,
    pub alpha_end_variance: AnimatedFloat,

    pub angle: AnimatedFloat,
    pub angle_variance: AnimatedFloat,

    pub gravity_x: AnimatedFloat,
    pub gravity_y: AnimatedFloat,

    pub max_radius: AnimatedFloat,
    pub max_radius_variance: AnimatedFloat,

    pub min_radius: AnimatedFloat,

    pub lifespan_variance: AnimatedFloat,
    pub lifespan: AnimatedFloat,

    pub rotate_per_second: AnimatedFloat,
    pub rotate_per_second_variance: AnimatedFloat,

    pub rotation_start: AnimatedFloat,
    pub rotation_start_variance: AnimatedFloat,

    pub rotation_end: AnimatedFloat,
    pub rotation_end_variance: AnimatedFloat,

    pub size_start: AnimatedFloat,
    pub size_start_variance: AnimatedFloat,

    pub size_end: AnimatedFloat,
    pub size_end_variance: AnimatedFloat,

    pub speed: AnimatedFloat,
    pub speed_variance: AnimatedFloat,

    pub radial_accel: AnimatedFloat,
    pub radial_accel_variance: AnimatedFloat,

    pub tangential_accel: AnimatedFloat,
    pub tangential_accel_variance: AnimatedFloat,

    // The particle pool
    particles: Vec<Particle>,

    // Time passed since the last emission
    emit_elapsed: f32,

    total_elapsed: f32,
}

impl EmitterSprite {
    pub fn new(mold: &EmitterMold) -> Self {
        let mut instance = Self {
            inner: Sprite::default(),

            texture: mold.texture.clone(),
            type_: mold.type_,

            alpha_end: AnimatedFloat::new(mold.alpha_end, None),
            alpha_end_variance: AnimatedFloat::new(mold.alpha_end_variance, None),
            alpha_start: AnimatedFloat::new(mold.alpha_start, None),
            alpha_start_variance: AnimatedFloat::new(mold.alpha_start_variance, None),
            angle: AnimatedFloat::new(mold.angle, None),
            angle_variance: AnimatedFloat::new(mold.angle_variance, None),
            duration: mold.duration,
            emit_x_variance: AnimatedFloat::new(mold.emit_x_variance, None),
            emit_y_variance: AnimatedFloat::new(mold.emit_y_variance, None),
            gravity_x: AnimatedFloat::new(mold.gravity_x, None),
            gravity_y: AnimatedFloat::new(mold.gravity_y, None),
            max_radius: AnimatedFloat::new(mold.max_radius, None),
            max_radius_variance: AnimatedFloat::new(mold.max_radius_variance, None),
            min_radius: AnimatedFloat::new(mold.min_radius, None),
            lifespan: AnimatedFloat::new(mold.lifespan, None),
            lifespan_variance: AnimatedFloat::new(mold.lifespan_variance, None),
            radial_accel: AnimatedFloat::new(mold.radial_accel, None),
            radial_accel_variance: AnimatedFloat::new(mold.radial_accel_variance, None),
            rotate_per_second: AnimatedFloat::new(mold.rotate_per_second, None),
            rotate_per_second_variance: AnimatedFloat::new(mold.rotate_per_second_variance, None),
            rotation_end: AnimatedFloat::new(mold.rotation_end, None),
            rotation_end_variance: AnimatedFloat::new(mold.rotation_end_variance, None),
            rotation_start: AnimatedFloat::new(mold.rotation_start, None),
            rotation_start_variance: AnimatedFloat::new(mold.rotation_start_variance, None),
            size_end: AnimatedFloat::new(mold.size_end, None),
            size_end_variance: AnimatedFloat::new(mold.size_end_variance, None),
            size_start: AnimatedFloat::new(mold.size_start, None),
            size_start_variance: AnimatedFloat::new(mold.size_start_variance, None),
            speed: AnimatedFloat::new(mold.speed, None),
            speed_variance: AnimatedFloat::new(mold.speed_variance, None),
            tangential_accel: AnimatedFloat::new(mold.tangential_accel, None),
            tangential_accel_variance: AnimatedFloat::new(mold.tangential_accel_variance, None),

            emit_x: AnimatedFloat::new(0.0, None),
            emit_y: AnimatedFloat::new(0.0, None),
            emit_elapsed: 0.0,
            particles: Vec::new(),
            total_elapsed: 0.0,
            enabled: true,
            max_particles: 0,
            num_particles: 0,
        };

        instance.inner.blend_mode = mold.blend_mode.unwrap_or_default();

        instance.particles = Vec::with_capacity(mold.max_particles);
        let mut idx = 0;
        let ll = instance.particles.len();
        while idx < ll {
            instance.particles[idx] = Particle::new();
            idx += 1;
        }

        instance
    }

    pub fn restart(&mut self) {
        self.enabled = true;
        self.total_elapsed = 0.0;
    }

    // override
    pub fn on_update(&mut self, dt: f32) {
        self.inner.on_update(dt);

        self.alpha_end.update(dt);
        self.alpha_end_variance.update(dt);
        self.alpha_start.update(dt);
        self.alpha_start_variance.update(dt);
        self.angle.update(dt);
        self.angle_variance.update(dt);
        self.emit_x.update(dt);
        self.emit_x_variance.update(dt);
        self.emit_y.update(dt);
        self.emit_y_variance.update(dt);
        self.gravity_x.update(dt);
        self.gravity_y.update(dt);
        self.lifespan.update(dt);
        self.lifespan_variance.update(dt);
        self.max_radius.update(dt);
        self.max_radius_variance.update(dt);
        self.min_radius.update(dt);
        self.radial_accel.update(dt);
        self.radial_accel_variance.update(dt);
        self.rotate_per_second.update(dt);
        self.rotate_per_second_variance.update(dt);
        self.rotation_end.update(dt);
        self.rotation_end_variance.update(dt);
        self.rotation_start.update(dt);
        self.rotation_start_variance.update(dt);
        self.size_end.update(dt);
        self.size_end_variance.update(dt);
        self.size_start.update(dt);
        self.size_start_variance.update(dt);
        self.speed.update(dt);
        self.speed_variance.update(dt);
        self.tangential_accel.update(dt);
        self.tangential_accel_variance.update(dt);

        // Update existing particles
        let gravity_type = self.type_ == EmitterType::Gravity;
        let mut idx = 0;
        while idx < self.num_particles {
            let mut particle = self.particles[idx];
            if particle.life > dt {
                if gravity_type {
                    particle.x += particle.vel_x * dt;
                    particle.y += particle.vel_y * dt;

                    let mut accel_x = self.gravity_x.get();
                    let mut accel_y = -self.gravity_y.get();

                    if particle.radial_accel != 0.0 || particle.tangential_accel != 0.0 {
                        let dx = particle.x - particle.emit_x;
                        let dy = particle.y - particle.emit_y;
                        let distance = (dx * dx + dy * dy).sqrt();

                        // Apply radial force
                        let radial_x = dx / distance;
                        let radial_y = dy / distance;
                        accel_x += radial_x * particle.radial_accel;
                        accel_y += radial_y * particle.radial_accel;

                        // Apply tangential force
                        let tangential_x = -radial_y;
                        let tangential_y = radial_x;
                        accel_x += tangential_x * particle.tangential_accel;
                        accel_y += tangential_y * particle.tangential_accel;
                    }

                    particle.vel_x += accel_x * dt;
                    particle.vel_y += accel_y * dt;
                } else {
                    particle.radial_rotation += particle.vel_radial_rotation * dt;
                    particle.radial_radius += particle.vel_radial_radius * dt;

                    let radius = particle.radial_radius;
                    particle.x = self.emit_x.get() - particle.radial_rotation.cos() * radius;
                    particle.y = self.emit_y.get() - particle.radial_rotation.sin() * radius;

                    if radius < self.min_radius.get() {
                        particle.life = 0.0; // Kill it
                    }
                }

                particle.scale += particle.vel_scale * dt;
                particle.rotation += particle.vel_rotation * dt;
                particle.alpha += particle.vel_alpha * dt;

                particle.life -= dt;
                idx += 1;
            } else {
                // Kill it, and swap it with the last living particle, so that alive particles are
                // packed to the front of the pool
                self.num_particles -= 1;
                if idx != self.num_particles {
                    self.particles[idx] = self.particles[self.num_particles];
                    self.particles[self.num_particles] = particle;
                }
            }
        }

        // Check whether we should continue to the emit step
        if !self.enabled {
            return;
        }

        if self.duration > 0.0 {
            self.total_elapsed += dt;
            if self.total_elapsed >= self.duration {
                self.enabled = false;
                return;
            }
        }

        // Emit new particles
        let emit_delay = self.lifespan.get() / self.particles.len() as f32;
        self.emit_elapsed += dt;
        while self.emit_elapsed >= emit_delay {
            if self.num_particles < self.particles.len() {
                let mut particle = self.particles[self.num_particles];
                if self.init_particle(&mut particle) {
                    self.num_particles += 1;
                }
            }
            self.emit_elapsed -= emit_delay;
        }
    }

    // override
    pub fn draw(&self, gfx: &Box<dyn Graphics>) {
        if let Some(ref texture) = self.texture {
            // Assumes that the texture is always square
            let offset = -texture.width() as f32 / 2.0;

            let mut idx = 0;
            let ll = self.num_particles;
            while idx < ll {
                let particle = self.particles[idx];
                gfx.save();
                gfx.translate(particle.x, particle.y);

                if particle.alpha < 1.0 {
                    gfx.multiply_alpha(particle.alpha);
                }

                if particle.rotation != 0.0 {
                    gfx.rotate(particle.rotation);
                }

                if particle.scale != 1.0 {
                    gfx.scale(particle.scale, particle.scale);
                }

                gfx.draw_texture(texture, offset, offset);
                gfx.restore();

                idx += 1;
            }
        } else {
            log::warn!("no texture for particle emmiter");
        }
    }

    fn init_particle(&mut self, particle: &mut Particle) -> bool {
        particle.life = Self::random(self.lifespan.get(), self.lifespan_variance.get());
        if particle.life <= 0.0 {
            return false; // Dead on arrival
        }

        // Don't include the variance here
        particle.emit_x = self.emit_x.get();
        particle.emit_y = self.emit_y.get();

        let angle = -Math::to_radians(Self::random(self.angle.get(), self.angle_variance.get()));
        let speed = Self::random(self.speed.get(), self.speed_variance.get());
        particle.vel_x = speed * angle.cos();
        particle.vel_y = speed * angle.sin();

        particle.radial_accel =
            Self::random(self.radial_accel.get(), self.radial_accel_variance.get());
        particle.tangential_accel = Self::random(
            self.tangential_accel.get(),
            self.tangential_accel_variance.get(),
        );

        particle.radial_radius =
            Self::random(self.max_radius.get(), self.max_radius_variance.get());
        particle.vel_radial_radius = -particle.radial_radius / particle.life;
        particle.radial_rotation = angle;
        particle.vel_radial_rotation = Math::to_radians(Self::random(
            self.rotate_per_second.get(),
            self.rotate_per_second_variance.get(),
        ));

        if self.type_ == EmitterType::Gravity {
            particle.x = Self::random(self.emit_x.get(), self.emit_x_variance.get());
            particle.y = Self::random(self.emit_y.get(), self.emit_y_variance.get());
        } else {
            // type == Radial
            let radius = particle.radial_radius;
            particle.x = self.emit_x.get() - particle.radial_rotation.cos() * radius;
            particle.y = self.emit_y.get() - particle.radial_rotation.sin() * radius;
        }

        // Assumes that the texture is always square
        let width = self.texture.as_ref().unwrap().width() as f32;
        let scale_start =
            Self::random(self.size_start.get(), self.size_start_variance.get()) / width;
        let scale_end = Self::random(self.size_end.get(), self.size_end_variance.get()) / width;
        particle.scale = scale_start;
        particle.vel_scale = (scale_end - scale_start) / particle.life;

        let rotation_start = Self::random(
            self.rotation_start.get(),
            self.rotation_start_variance.get(),
        );
        let rotation_end = Self::random(self.rotation_end.get(), self.rotation_end_variance.get());
        particle.rotation = rotation_start;
        particle.vel_rotation = (rotation_end - rotation_start) / particle.life;

        let alpha_start = Self::random(self.alpha_start.get(), self.alpha_start_variance.get());
        let alpha_end = Self::random(self.alpha_end.get(), self.alpha_end_variance.get());
        particle.alpha = alpha_start;
        particle.vel_alpha = (alpha_end - alpha_start) / particle.life;

        true
    }

    #[inline]
    fn max_particles(&self) -> usize {
        self.particles.len()
    }

    fn set_max_particles(&mut self, max_particles: usize) {
        // Grow the pool
        let mut old_length = self.particles.len();
        self.particles.resize(max_particles, Default::default());
        while old_length < max_particles {
            self.particles[old_length] = Particle::new();
            old_length += 1;
        }

        if self.num_particles > max_particles {
            self.num_particles = max_particles;
        }
    }

    // static
    fn random(base: f32, variance: f32) -> f32 {
        if variance != 0.0 {
            return base + variance * (2.0 * rand::random::<f32>() - 1.0);
        }

        base
    }
}

impl AsRef<Sprite> for EmitterSprite {
    fn as_ref(&self) -> &Sprite {
        &self.inner
    }
}

#[derive(Default, Debug, Clone, Copy)]
pub struct Particle {
    // Where the emitter was when the particle was spawned
    pub emit_x: f32,
    pub emit_y: f32,

    pub x: f32,
    pub vel_x: f32,

    pub y: f32,
    pub vel_y: f32,

    pub radial_radius: f32,
    pub vel_radial_radius: f32,

    pub radial_rotation: f32,
    pub vel_radial_rotation: f32,

    pub radial_accel: f32,
    pub tangential_accel: f32,

    pub scale: f32,
    pub vel_scale: f32,

    pub rotation: f32,
    pub vel_rotation: f32,

    pub alpha: f32,
    pub vel_alpha: f32,

    pub life: f32,
}

impl Particle {
    pub fn new() -> Self {
        Default::default()
    }
}