1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
use crate::{AllocError, InnerAtomicFlag, FALSE, TRUE};
use core::fmt::Debug;
use core::{
    alloc::Layout,
    iter::FusedIterator,
    ptr::NonNull,
    sync::atomic::{AtomicPtr, Ordering},
};
#[cfg(feature = "alloc_api")]
use {alloc::alloc::Global, core::alloc::*};

macro_rules! impl_all {
    (impl $(@$tr:path =>)? $target:ident {
        $($t:tt)*
    }) => {
        cfg_if::cfg_if! {
            if #[cfg(feature = "alloc_api")] {
                impl<T, A: Allocator> $($tr for)? $target <T, A> {
                    $($t)*
                }
            } else {
                impl<T> $($tr for)? $target <T> {
                    $($t)*
                }
            }
        }
    };
}

struct PrevCell<T> {
    init: InnerAtomicFlag,
    prev: AtomicPtr<FillQueueNode<T>>,
}

impl<T> PrevCell<T> {
    #[inline]
    pub const fn new() -> Self {
        return Self {
            init: InnerAtomicFlag::new(FALSE),
            prev: AtomicPtr::new(core::ptr::null_mut()),
        };
    }

    #[inline]
    pub fn set(&self, prev: *mut FillQueueNode<T>) {
        cfg_if::cfg_if! {
            if #[cfg(debug_assertions)] {
                assert!(self.prev.swap(prev, Ordering::AcqRel).is_null());
                self.init.store(TRUE, Ordering::Release);
            } else {
                self.prev.store(prev, Ordering::Release);
                self.init.store(TRUE, Ordering::Release);
            }
        }
    }

    #[inline]
    pub fn set_mut(&mut self, prev: *mut FillQueueNode<T>) {
        let this_prev = self.prev.get_mut();
        debug_assert!(this_prev.is_null());

        *this_prev = prev;
        *self.init.get_mut() = TRUE;
    }

    pub fn get(&self) -> *mut FillQueueNode<T> {
        while self.init.load(Ordering::Acquire) == FALSE {
            core::hint::spin_loop()
        }
        return self.prev.swap(core::ptr::null_mut(), Ordering::Acquire);
    }
}

struct FillQueueNode<T> {
    prev: PrevCell<T>,
    v: T,
}

/// An atomic queue intended for use cases where taking the full contents of the queue is needed.
///
/// The queue is, basically, an atomic singly-linked list, where nodes are first allocated and then the list's tail
/// is atomically updated.
///
/// When the queue is "chopped", the list's tail is swaped to null, and it's previous tail is used as the base of the [`ChopIter`]
///
/// # Performance
/// The performance of pushing elements is expected to be similar to pushing elements to a [`SegQueue`](crossbeam::queue::SegQueue) or `Mutex<Vec<_>>`,
/// but "chopping" elements is expected to be arround 2 times faster than with a `Mutex<Vec<_>>`, and 3 times faster than a [`SegQueue`](crossbeam::queue::SegQueue)
///
/// > You can see the benchmark results [here](https://docs.google.com/spreadsheets/d/1wcyD3TlCQMCPFHOfeko5ytn-R7aM8T7lyKVir6vf_Wo/edit?usp=sharing)
///
/// # Use `FillQueue` when:
/// - You want a queue that's updateable by shared reference
/// - You want to retreive all elements of the queue at once
/// - There is no specifically desired order for the elements to be retreived on, or that order is LIFO (Last In First Out)
///
/// # Don't use `FillQueue` when:
/// - You don't need a queue updateable by shared reference
/// - You want to retreive the elements of the queue one by one (see [`SegQueue`](crossbeam::queue::SegQueue))
/// - You require the elements in a specific order that isn't LIFO
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub struct FillQueue<T, #[cfg(feature = "alloc_api")] A: Allocator = Global> {
    head: AtomicPtr<FillQueueNode<T>>,
    #[cfg(feature = "alloc_api")]
    alloc: A,
}

impl<T> FillQueue<T> {
    /// Creates a new [`FillQueue`] with the global allocator.
    /// # Example
    /// ```rust
    /// use utils_atomics::prelude::*;
    ///
    /// let queue = FillQueue::<i32>::new();
    /// ```
    #[inline]
    pub const fn new() -> Self {
        Self {
            head: AtomicPtr::new(core::ptr::null_mut()),
            #[cfg(feature = "alloc_api")]
            alloc: Global,
        }
    }
}

#[docfg::docfg(feature = "alloc_api")]
impl<T, A: Allocator> FillQueue<T, A> {
    /// Creates a new [`FillQueue`] with the given allocator.
    /// # Example
    /// ```rust
    /// #![feature(allocator_api)]
    ///
    /// use utils_atomics::prelude::*;
    /// use std::alloc::Global;
    ///
    /// let queue = FillQueue::<i32>::new_in(Global);
    /// ```
    #[inline]
    pub const fn new_in(alloc: A) -> Self {
        Self {
            head: AtomicPtr::new(core::ptr::null_mut()),
            alloc,
        }
    }

    /// Returns a reference to this queue's allocator.
    /// # Example
    /// ```rust
    /// #![feature(allocator_api)]
    ///
    /// use utils_atomics::prelude::*;
    /// use std::alloc::Global;
    ///
    /// let queue = FillQueue::<i32>::new();
    /// let alloc : &Global = queue.allocator();
    /// ```
    #[inline]
    pub fn allocator(&self) -> &A {
        &self.alloc
    }
}

impl_all! {
    impl FillQueue {
        /// Returns `true` if the que is currently empty, `false` otherwise.
        /// # Safety
        /// Whilst this method is not unsafe, it's result should be considered immediately stale.
        /// # Example
        /// ```rust
        /// use utils_atomics::prelude::*;
        ///
        /// let queue = FillQueue::<i32>::new();
        /// assert!(queue.is_empty());
        /// ```
        #[inline]
        pub fn is_empty (&self) -> bool {
            self.head.load(Ordering::Relaxed).is_null()
        }

        /// Uses atomic operations to push an element to the queue.
        /// # Panics
        /// This method panics if `alloc` fails to allocate the memory needed for the node.
        /// # Example
        /// ```rust
        /// use utils_atomics::prelude::*;
        ///
        /// let queue = FillQueue::<i32>::new();
        /// queue.push(1);
        /// assert_eq!(queue.chop().next(), Some(1));
        /// ```
        #[inline]
        pub fn push (&self, v: T) {
            self.try_push(v).unwrap()
        }

        /// Uses non-atomic operations to push an element to the queue.
        /// # Panics
        /// This method panics if `alloc` fails to allocate the memory needed for the node.
        /// # Example
        /// ```rust
        /// use utils_atomics::prelude::*;
        ///
        /// let mut queue = FillQueue::<i32>::new();
        /// queue.push_mut(1);
        /// assert_eq!(queue.chop_mut().next(), Some(1));
        /// ```
        #[inline]
        pub fn push_mut (&mut self, v: T) {
            self.try_push_mut(v).unwrap()
        }

        /// Uses atomic operations to push an element to the queue.
        ///
        /// # Errors
        ///
        /// This method returns an error if `alloc` fails to allocate the memory needed for the node.
        ///
        /// # Example
        /// ```rust
        /// use utils_atomics::prelude::*;
        ///
        /// let queue = FillQueue::<i32>::new();
        /// assert!(queue.try_push(1).is_ok());
        /// assert_eq!(queue.chop().next(), Some(1));
        /// ```
        pub fn try_push (&self, v: T) -> Result<(), AllocError> {
            let node = FillQueueNode {
                prev: PrevCell::new(),
                v
            };

            let layout = Layout::new::<FillQueueNode<T>>();
            #[cfg(feature = "alloc_api")]
            let ptr = self.alloc.allocate(layout)?.cast::<FillQueueNode<T>>();
            #[cfg(not(feature = "alloc_api"))]
            let ptr = match unsafe { NonNull::new(alloc::alloc::alloc(layout)) } {
                Some(x) => x.cast::<FillQueueNode<T>>(),
                None => return Err(AllocError)
            };

            unsafe {
                ptr.as_ptr().write(node)
            }

            let prev = self.head.swap(ptr.as_ptr(), Ordering::AcqRel);
            unsafe {
                let rf = &*ptr.as_ptr();
                rf.prev.set(prev);
            }

            Ok(())
        }

        /// Uses non-atomic operations to push an element to the queue.
        ///
        /// # Safety
        ///
        /// This method is safe because the mutable reference guarantees we are the only thread that can access this queue.
        ///
        /// # Errors
        ///
        /// This method returns an error if `alloc` fails to allocate the memory needed for the node.
        ///
        /// # Example
        ///
        /// ```rust
        /// use utils_atomics::prelude::*;
        ///
        /// let mut queue = FillQueue::<i32>::new();
        /// assert!(queue.try_push_mut(1).is_ok());
        /// assert_eq!(queue.chop_mut().next(), Some(1));
        /// ```
        pub fn try_push_mut (&mut self, v: T) -> Result<(), AllocError> {
            let node = FillQueueNode {
                prev: PrevCell::new(),
                v
            };

            let layout = Layout::new::<FillQueueNode<T>>();
            #[cfg(feature = "alloc_api")]
            let mut ptr = self.alloc.allocate(layout)?.cast::<FillQueueNode<T>>();
            #[cfg(not(feature = "alloc_api"))]
            let mut ptr = match unsafe { NonNull::new(alloc::alloc::alloc(layout)) } {
                Some(x) => x.cast::<FillQueueNode<T>>(),
                None => return Err(AllocError)
            };

            unsafe {
                ptr.as_ptr().write(node);
                let prev = core::ptr::replace(self.head.get_mut(), ptr.as_ptr());
                ptr.as_mut().prev.set_mut(prev);
                Ok(())
            }
        }
    }
}

#[cfg(feature = "alloc_api")]
impl<T, A: Allocator> FillQueue<T, A> {
    /// Returns a LIFO (Last In First Out) iterator over a chopped chunk of a [`FillQueue`].
    /// The elements that find themselves inside the chopped region of the queue will be accessed through non-atomic operations.
    /// # Example
    /// ```rust
    /// use utils_atomics::prelude::*;
    ///
    /// let queue = FillQueue::<i32>::new();
    ///
    /// queue.push(1);
    /// queue.push(2);
    /// queue.push(3);
    ///
    /// let mut iter = queue.chop();
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), None)
    /// ```
    #[inline]
    pub fn chop(&self) -> ChopIter<T, A>
    where
        A: Clone,
    {
        let ptr = self.head.swap(core::ptr::null_mut(), Ordering::AcqRel);
        ChopIter {
            ptr: NonNull::new(ptr),
            alloc: self.alloc.clone(),
        }
    }

    /// Returns a LIFO (Last In First Out) iterator over a chopped chunk of a [`FillQueue`]. The chopping is done with non-atomic operations.
    /// # Safety
    /// This method is safe because the mutable reference guarantees we are the only thread that can access this queue.
    /// # Example
    /// ```rust
    /// use utils_atomics::prelude::*;
    ///
    /// let mut queue = FillQueue::<i32>::new();
    ///
    /// queue.push_mut(1);
    /// queue.push_mut(2);
    /// queue.push_mut(3);
    ///
    /// let mut iter = queue.chop_mut();
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), None)
    /// ```
    #[inline]
    pub fn chop_mut(&mut self) -> ChopIter<T, A>
    where
        A: Clone,
    {
        let ptr = unsafe { core::ptr::replace(self.head.get_mut(), core::ptr::null_mut()) };

        ChopIter {
            ptr: NonNull::new(ptr),
            alloc: self.alloc.clone(),
        }
    }
}

#[cfg(not(feature = "alloc_api"))]
impl<T> FillQueue<T> {
    /// Returns a LIFO (Last In First Out) iterator over a chopped chunk of a [`FillQueue`].
    /// The elements that find themselves inside the chopped region of the queue will be accessed through non-atomic operations.
    /// # Example
    /// ```rust
    /// use utils_atomics::prelude::*;
    ///
    /// let queue = FillQueue::<i32>::new();
    ///
    /// queue.push(1);
    /// queue.push(2);
    /// queue.push(3);
    ///
    /// let mut iter = queue.chop();
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), None)
    /// ```
    #[inline]
    pub fn chop(&self) -> ChopIter<T> {
        let ptr = self.head.swap(core::ptr::null_mut(), Ordering::AcqRel);
        ChopIter {
            ptr: NonNull::new(ptr),
        }
    }

    /// Returns a LIFO (Last In First Out) iterator over a chopped chunk of a [`FillQueue`]. The chopping is done with non-atomic operations.
    /// # Safety
    /// This method is safe because the mutable reference guarantees we are the only thread that can access this queue.
    /// # Example
    /// ```rust
    /// use utils_atomics::prelude::*;
    ///
    /// let mut queue = FillQueue::<i32>::new();
    ///
    /// queue.push_mut(1);
    /// queue.push_mut(2);
    /// queue.push_mut(3);
    ///
    /// let mut iter = queue.chop_mut();
    /// assert_eq!(iter.next(), Some(3));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), None)
    /// ```
    #[inline]
    pub fn chop_mut(&mut self) -> ChopIter<T> {
        let ptr = unsafe { core::ptr::replace(self.head.get_mut(), core::ptr::null_mut()) };

        ChopIter {
            ptr: NonNull::new(ptr),
        }
    }
}

cfg_if::cfg_if! {
    if #[cfg(feature = "alloc_api")] {
        unsafe impl<T: Send, A: Send + Allocator> Send for FillQueue<T, A> {}
        unsafe impl<T: Sync, A: Sync + Allocator> Sync for FillQueue<T, A> {}
        unsafe impl<T: Send, A: Send + Allocator> Send for ChopIter<T, A> {}
        unsafe impl<T: Sync, A: Sync + Allocator> Sync for ChopIter<T, A> {}
    } else {
        unsafe impl<T: Send> Send for FillQueue<T> {}
        unsafe impl<T: Sync> Sync for FillQueue<T> {}
        unsafe impl<T: Send> Send for ChopIter<T> {}
        unsafe impl<T: Sync> Sync for ChopIter<T> {}
    }
}

/// Iterator of [`FillQueue::chop`] and [`FillQueue::chop_mut`]
pub struct ChopIter<T, #[cfg(feature = "alloc_api")] A: Allocator = Global> {
    ptr: Option<NonNull<FillQueueNode<T>>>,
    #[cfg(feature = "alloc_api")]
    alloc: A,
}

impl_all! {
    impl @Iterator => ChopIter {
        type Item = T;

        #[inline]
        fn next(&mut self) -> Option<Self::Item> {
            if let Some(ptr) = self.ptr {
                unsafe {
                    let node = &*ptr.as_ptr();
                    let value = core::ptr::read(&node.v);
                    self.ptr = NonNull::new(node.prev.get());

                    #[cfg(feature = "alloc_api")]
                    self.alloc.deallocate(ptr.cast(), Layout::new::<FillQueueNode<T>>());
                    #[cfg(not(feature = "alloc_api"))]
                    alloc::alloc::dealloc(ptr.as_ptr().cast(), Layout::new::<FillQueueNode<T>>());

                    return Some(value)
                }
            }

            None
        }
    }
}

impl_all! {
    impl @Drop => ChopIter {
        #[inline]
        fn drop(&mut self) {
            self.for_each(core::mem::drop)
        }
    }
}

impl_all! {
    impl @FusedIterator => ChopIter {}
}

#[cfg(feature = "alloc_api")]
impl<T, A: Debug + Allocator> Debug for FillQueue<T, A> {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        f.debug_struct("FillQueue")
            .field("alloc", &self.alloc)
            .finish_non_exhaustive()
    }
}
#[cfg(not(feature = "alloc_api"))]
impl<T> Debug for FillQueue<T> {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
        f.debug_struct("FillQueue").finish_non_exhaustive()
    }
}

// Thanks ChatGPT!
#[cfg(test)]
mod tests {
    use super::FillQueue;

    #[test]
    fn test_basic_functionality() {
        let mut fill_queue = FillQueue::new();
        assert!(fill_queue.is_empty());

        fill_queue.push(1);
        fill_queue.push(2);
        fill_queue.push(3);

        assert!(!fill_queue.is_empty());

        let mut chop_iter = fill_queue.chop_mut();
        assert_eq!(chop_iter.next(), Some(3));
        assert_eq!(chop_iter.next(), Some(2));
        assert_eq!(chop_iter.next(), Some(1));
        assert_eq!(chop_iter.next(), None);

        fill_queue.push_mut(1);
        fill_queue.push_mut(2);
        fill_queue.push_mut(3);

        let mut chop_iter = fill_queue.chop();
        assert_eq!(chop_iter.next(), Some(3));
        assert_eq!(chop_iter.next(), Some(2));
        assert_eq!(chop_iter.next(), Some(1));
        assert_eq!(chop_iter.next(), None);

        assert!(fill_queue.is_empty());
    }

    #[cfg(feature = "std")]
    #[test]
    fn test_concurrent_fill_queue() {
        use core::sync::atomic::{AtomicUsize, Ordering};

        let fill_queue = FillQueue::new();
        let mut count = AtomicUsize::new(0);

        std::thread::scope(|s| {
            for _ in 0..10 {
                s.spawn(|| {
                    for i in 1..=10 {
                        fill_queue.push(i);
                    }

                    count.fetch_add(fill_queue.chop().count(), Ordering::Relaxed);
                });
            }
        });

        assert_eq!(*count.get_mut(), 100);
    }
}