1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
use core::{alloc::{Allocator, Layout, AllocError}, sync::atomic::{AtomicPtr, Ordering}, ptr::NonNull, iter::FusedIterator};
use alloc::{alloc::Global};
struct FillQueueNode<T> {
prev: AtomicPtr<Self>,
v: T
}
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub struct FillQueue<T, A: Allocator = Global> {
head: AtomicPtr<FillQueueNode<T>>,
alloc: A
}
impl<T> FillQueue<T> {
/// Creates a new [`FillQueue`] with the global allocator.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let queue = FillQueue::<i32>::new();
/// ```
#[inline(always)]
pub const fn new () -> Self {
Self::new_in(Global)
}
}
impl<T, A: Allocator> FillQueue<T, A> {
/// Creates a new [`FillQueue`] with the given allocator.
/// # Example
/// ```rust
/// #![feature(allocator_api)]
///
/// use atomic_col::prelude::*;
/// use std::alloc::Global;
///
/// let queue = FillQueue::<i32>::new_in(Global);
/// ```
#[inline(always)]
pub const fn new_in (alloc: A) -> Self {
Self {
head: AtomicPtr::new(core::ptr::null_mut()),
alloc
}
}
/// Returns a reference to this queue's allocator.
/// # Example
/// ```rust
/// #![feature(allocator_api)]
///
/// use atomic_col::prelude::*;
/// use std::alloc::Global;
///
/// let queue = FillQueue::<i32>::new();
/// let alloc : &Global = queue.allocator();
/// ```
#[inline(always)]
pub fn allocator (&self) -> &A {
&self.alloc
}
/// Returns `true` if the que is currently empty, `false` otherwise.
/// # Safety
/// Whilst this method is not unsafe, it's result should be considered immediately stale.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let queue = FillQueue::<i32>::new();
/// assert!(queue.is_empty());
/// ```
#[inline(always)]
pub fn is_empty (&self) -> bool {
self.head.load(Ordering::Relaxed).is_null()
}
/// Uses atomic operations to push an element to the queue.
/// # Panics
/// This method panics if `alloc` fails to allocate the memory needed for the node.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let queue = FillQueue::<i32>::new();
/// queue.push(1);
/// assert_eq!(queue.chop().next(), Some(1));
/// ```
#[inline(always)]
pub fn push (&self, v: T) {
self.try_push(v).unwrap()
}
/// Uses non-atomic operations to push an element to the queue.
/// # Panics
/// This method panics if `alloc` fails to allocate the memory needed for the node.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let mut queue = FillQueue::<i32>::new();
/// queue.push_mut(1);
/// assert_eq!(queue.chop_mut().next(), Some(1));
/// ```
#[inline(always)]
pub fn push_mut (&mut self, v: T) {
self.try_push_mut(v).unwrap()
}
/// Uses atomic operations to push an element to the queue.
/// # Errors
/// This method returns an error if `alloc` fails to allocate the memory needed for the node.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let queue = FillQueue::<i32>::new();
/// assert!(queue.try_push(1).is_ok());
/// assert_eq!(queue.chop().next(), Some(1));
/// ```
pub fn try_push (&self, v: T) -> Result<(), AllocError> {
let node = FillQueueNode {
prev: AtomicPtr::default(),
v
};
let ptr = self.alloc.allocate(Layout::new::<FillQueueNode<T>>())?.cast::<FillQueueNode<T>>();
unsafe {
ptr.as_ptr().write(node)
}
let prev = self.head.swap(ptr.as_ptr(), Ordering::AcqRel);
unsafe {
ptr.as_ref().prev.store(prev, Ordering::Release);
}
Ok(())
}
/// Uses non-atomic operations to push an element to the queue.
/// # Safety
/// This method is safe because the mutable reference guarantees we are the only thread that can access this queue.
/// # Errors
/// This method returns an error if `alloc` fails to allocate the memory needed for the node.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let mut queue = FillQueue::<i32>::new();
/// assert!(queue.try_push_mut(1).is_ok());
/// assert_eq!(queue.chop_mut().next(), Some(1));
/// ```
pub fn try_push_mut (&mut self, v: T) -> Result<(), AllocError> {
let node = FillQueueNode {
prev: AtomicPtr::default(),
v
};
let mut ptr = self.alloc.allocate(Layout::new::<FillQueueNode<T>>())?.cast::<FillQueueNode<T>>();
unsafe {
ptr.as_ptr().write(node);
let prev = core::ptr::replace(self.head.get_mut(), ptr.as_ptr());
*ptr.as_mut().prev.get_mut() = prev;
Ok(())
}
}
}
impl<T, A: Allocator> FillQueue<T, A> {
/// Returns a LIFO (Last In First Out) iterator over a chopped chunk of a [`FillQueue`].
/// The elements that find themselves inside the chopped region of the queue will be accessed through non-atomic operations.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let queue = FillQueue::<i32>::new();
///
/// queue.push(1);
/// queue.push(2);
/// queue.push(3);
///
/// let mut iter = queue.chop();
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), Some(2));
/// assert_eq!(iter.next(), Some(1));
/// assert_eq!(iter.next(), None)
/// ```
#[inline(always)]
pub fn chop (&self) -> ChopIter<T, A> where A: Clone {
let ptr = self.head.swap(core::ptr::null_mut(), Ordering::AcqRel);
ChopIter {
ptr: NonNull::new(ptr),
alloc: self.alloc.clone()
}
}
/// Returns a LIFO (Last In First Out) iterator over a chopped chunk of a [`FillQueue`]. The chopping is done with non-atomic operations.
/// # Safety
/// This method is safe because the mutable reference guarantees we are the only thread that can access this queue.
/// # Example
/// ```rust
/// use atomic_col::prelude::*;
///
/// let mut queue = FillQueue::<i32>::new();
///
/// queue.push_mut(1);
/// queue.push_mut(2);
/// queue.push_mut(3);
///
/// let mut iter = queue.chop_mut();
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), Some(2));
/// assert_eq!(iter.next(), Some(1));
/// assert_eq!(iter.next(), None)
/// ```
#[inline(always)]
pub fn chop_mut (&mut self) -> ChopIter<T, A> where A: Clone {
let ptr = unsafe {
core::ptr::replace(self.head.get_mut(), core::ptr::null_mut())
};
ChopIter {
ptr: NonNull::new(ptr),
alloc: self.alloc.clone()
}
}
}
/// Iterator of [`FillQueue::chop`] and [`FillQueue::chop_mut`]
pub struct ChopIter<T, A: Allocator = Global> {
ptr: Option<NonNull<FillQueueNode<T>>>,
alloc: A
}
impl<T, A: Allocator> Iterator for ChopIter<T, A> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let Some(ptr) = self.ptr {
unsafe {
let mut node = core::ptr::read(ptr.as_ptr());
self.alloc.deallocate(ptr.cast(), Layout::new::<FillQueueNode<T>>());
self.ptr = NonNull::new(*node.prev.get_mut());
return Some(node.v)
}
}
None
}
}
impl<T, A: Allocator> Drop for ChopIter<T, A> {
#[inline]
fn drop(&mut self) {
while let Some(ptr) = self.ptr {
unsafe {
let mut node = core::ptr::read(ptr.as_ptr());
self.alloc.deallocate(ptr.cast(), Layout::new::<FillQueueNode<T>>());
self.ptr = NonNull::new(*node.prev.get_mut());
}
}
}
}
impl<T> FusedIterator for ChopIter<T> {}