1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use super::*;
use std::string::ToString;
use std::iter::Iterator;
use ndarray::Axis;

impl<'a, T> Constructor<'a, T> for DataFrame<T>
    where T: UtahNum + 'a
{
    /// Create a new dataframe. The only required argument is data to populate the dataframe.
    /// By default, the columns and index of the dataframe are `["1", "2", "3"..."N"]`, where *N* is
    /// the number of columns (or rows) in the data.
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
    /// let df : DataFrame<f64> = DataFrame::new(a);
    /// ```
    ///
    /// When populating the dataframe with mixed-types, wrap the elements with `InnerType` enum:
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[InnerType::Float(2.0), InnerType::Str("ak".into())],
    ///                [InnerType::Int32(6), InnerType::Int64(10)]]);
    /// let df : DataFrame<InnerType> = DataFrame::new(a);
    /// ```
    fn new<U: Clone>(data: Matrix<U>) -> DataFrame<T>
        where T: From<U>
    {
        let mut data: Matrix<T> = data.mapv(T::from);
        data.mapv_inplace(|x| {
            if x.is_empty() {
                return T::empty();
            } else {
                return x;
            }
        });

        let columns: Vec<String> = (0..data.shape()[1]).map(|x| x.to_string()).collect();

        let index: Vec<String> = (0..data.shape()[0]).map(|x| x.to_string()).collect();

        DataFrame {
            data: data,
            columns: columns,
            index: index,
        }
    }
    /// Generate a 1-dimensional DataFrame from an 1-D array of data.
    /// When populating the dataframe with mixed-types, wrap the elements with `InnerType` enum.
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr1(&[2.0, 7.0]);
    /// let df : DataFrame<f64> = DataFrame::from_array(a, UtahAxis::Column);
    /// ```
    ///
    fn from_array<U: Clone>(data: Row<U>, axis: UtahAxis) -> DataFrame<T>
        where T: From<U>
    {
        let res_dim = match axis {
            UtahAxis::Column => (data.len(), 1),
            UtahAxis::Row => (1, data.len()),
        };
        let data: Matrix<T> = data.into_shape(res_dim).unwrap().mapv(T::from);
        let data: Matrix<T> = data.mapv_into(|x| {
            if x.is_empty() {
                return T::empty();
            } else {
                return x;
            }
        });
        let columns: Vec<String> = (0..res_dim.1).map(|x| x.to_string()).collect();

        let index: Vec<String> = (0..res_dim.0).map(|x| x.to_string()).collect();

        DataFrame {
            data: data,
            columns: columns,
            index: index,
        }
    }
    /// Populate the dataframe with a set of columns. The column elements can be any of `OuterType`. Example:
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
    /// let df : Result<DataFrame<f64>> = DataFrame::new(a).columns(&["a", "b"]);
    /// df.is_ok();
    /// ```
    fn columns<U: Clone>(mut self, columns: &'a [U]) -> Result<DataFrame<T>>
        where String: From<U>
    {
        let data_shape = self.data.shape()[1];
        let column_shape = columns.len();
        if column_shape != data_shape {
            return Err(ErrorKind::ColumnShapeMismatch(data_shape.to_string(),
                                                      column_shape.to_string())
                .into());
        }
        let new_columns: Vec<String> = columns.iter()
            .map(|x| x.clone().into())
            .collect();
        self.columns = new_columns;
        Ok(self)
    }

    /// Populate the dataframe with an index. The index elements can be any of `OuterType`. Example:
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
    /// let df : Result<DataFrame<f64>> = DataFrame::new(a).index(&["1", "2"]);
    /// df.is_ok();
    /// ```
    ///
    /// You can also populate the dataframe with both column names and index names, like so:
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
    /// let df : Result<DataFrame<f64>> = DataFrame::new(a).index(&["1", "2"]).unwrap().columns(&["a", "b"]);
    /// df.is_ok();
    /// ```
    fn index<U: Clone>(mut self, index: &'a [U]) -> Result<DataFrame<T>>
        where String: From<U>
    {
        let data_shape = self.data.shape()[0];
        let index_shape = index.len();
        if index_shape != data_shape {
            return Err(ErrorKind::IndexShapeMismatch(data_shape.to_string(),
                                                     index_shape.to_string())
                .into());
        }
        let new_index: Vec<String> = index.iter()
            .map(|x| x.clone().into())
            .collect();
        self.index = new_index;
        Ok(self)
    }


    /// Return a dataframe iterator over the specified `UtahAxis`.
    ///
    /// The dataframe iterator yields a view of a row or column of the dataframe for eventual
    /// processing. Example:
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
    /// let df : DataFrame<f64> = DataFrame::new(a).index(&["1", "2"]).unwrap().columns(&["a", "b"]).unwrap();
    /// let df_iter = df.df_iter(UtahAxis::Row);
    /// ```
    fn df_iter(&'a self, axis: UtahAxis) -> DataFrameIterator<'a, T> {
        match axis {
            UtahAxis::Row => {
                DataFrameIterator {
                    names: self.index.iter(),
                    data: self.data.axis_iter(Axis(0)),
                    other: self.columns.clone(),
                    axis: UtahAxis::Row,
                }
            }
            UtahAxis::Column => {
                DataFrameIterator {
                    names: self.columns.iter(),
                    data: self.data.axis_iter(Axis(1)),
                    other: self.index.to_owned(),
                    axis: UtahAxis::Column,
                }
            }
        }
    }

    /// Return a mutable dataframe iterator over the specified `UtahAxis`.
    ///
    /// The mutable dataframe iterator yields a view of a row or column of the dataframe for eventual
    /// processing. Example:
    ///
    /// ```
    /// use utah::prelude::*;
    /// let a = arr2(&[[2.0, 7.0], [3.0, 4.0]]);
    /// let mut df : DataFrame<f64> = DataFrame::new(a);
    /// let df_iter_mut = df.df_iter_mut(UtahAxis::Column);
    /// ```
    fn df_iter_mut(&'a mut self, axis: UtahAxis) -> DataFrameMutIterator<'a, T> {
        match axis {
            UtahAxis::Row => {
                DataFrameMutIterator {
                    names: self.index.iter(),
                    data: self.data.axis_iter_mut(Axis(0)),
                    axis: UtahAxis::Row,
                    other: self.columns.clone(),
                }
            }
            UtahAxis::Column => {
                DataFrameMutIterator {
                    names: self.columns.iter(),
                    data: self.data.axis_iter_mut(Axis(1)),
                    axis: UtahAxis::Row,
                    other: self.index.clone(),
                }
            }
        }
    }
}