1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

use strict_num::ApproxEqUlps;

use crate::{Align, AspectRatio};

/// A trait for fuzzy/approximate equality comparisons of float numbers.
pub trait FuzzyEq<Rhs: ?Sized = Self> {
    /// Returns `true` if values are approximately equal.
    fn fuzzy_eq(&self, other: &Rhs) -> bool;

    /// Returns `true` if values are not approximately equal.
    #[inline]
    fn fuzzy_ne(&self, other: &Rhs) -> bool {
        !self.fuzzy_eq(other)
    }
}

impl<T: FuzzyEq> FuzzyEq for Vec<T> {
    fn fuzzy_eq(&self, other: &Self) -> bool {
        if self.len() != other.len() {
            return false;
        }

        for (a, b) in self.iter().zip(other.iter()) {
            if a.fuzzy_ne(b) {
                return false;
            }
        }

        true
    }
}

/// A trait for fuzzy/approximate comparisons of float numbers.
pub trait FuzzyZero: FuzzyEq {
    /// Returns `true` if the number is approximately zero.
    fn is_fuzzy_zero(&self) -> bool;
}

impl FuzzyEq for f32 {
    #[inline]
    fn fuzzy_eq(&self, other: &f32) -> bool {
        self.approx_eq_ulps(other, 4)
    }
}

impl FuzzyEq for f64 {
    #[inline]
    fn fuzzy_eq(&self, other: &f64) -> bool {
        self.approx_eq_ulps(other, 4)
    }
}

impl FuzzyZero for f32 {
    #[inline]
    fn is_fuzzy_zero(&self) -> bool {
        self.fuzzy_eq(&0.0)
    }
}

impl FuzzyZero for f64 {
    #[inline]
    fn is_fuzzy_zero(&self) -> bool {
        self.fuzzy_eq(&0.0)
    }
}

/// Checks that the current number is > 0.
pub trait IsValidLength {
    /// Checks that the current number is > 0.
    fn is_valid_length(&self) -> bool;
}

impl IsValidLength for f64 {
    #[inline]
    fn is_valid_length(&self) -> bool {
        *self > 0.0 && self.is_finite()
    }
}

// TODO: remove
/// A 2D point representation.
#[derive(Clone, Copy)]
pub struct Point<T> {
    /// Position along the X-axis.
    pub x: T,

    /// Position along the Y-axis.
    pub y: T,
}

impl<T> Point<T> {
    /// Create a new point.
    pub fn new(x: T, y: T) -> Self {
        Point { x, y }
    }
}

impl<T: std::fmt::Display> std::fmt::Debug for Point<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "Point({} {})", self.x, self.y)
    }
}

impl<T: std::fmt::Display> std::fmt::Display for Point<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{:?}", self)
    }
}

/// A 2D size representation.
///
/// Width and height are guarantee to be > 0.
#[derive(Clone, Copy)]
pub struct Size {
    width: f64,
    height: f64,
}

impl Size {
    /// Creates a new `Size` from values.
    #[inline]
    pub fn new(width: f64, height: f64) -> Option<Self> {
        if width.is_valid_length() && height.is_valid_length() {
            Some(Size { width, height })
        } else {
            None
        }
    }

    /// Returns width.
    #[inline]
    pub fn width(&self) -> f64 {
        self.width
    }

    /// Returns height.
    #[inline]
    pub fn height(&self) -> f64 {
        self.height
    }

    /// Scales current size to specified size.
    #[inline]
    pub fn scale_to(&self, to: Self) -> Self {
        size_scale_f64(*self, to, false)
    }

    /// Expands current size to specified size.
    #[inline]
    pub fn expand_to(&self, to: Self) -> Self {
        size_scale_f64(*self, to, true)
    }

    /// Fits size into a viewbox.
    pub fn fit_view_box(&self, vb: &ViewBox) -> Self {
        let s = vb.rect.size();

        if vb.aspect.align == Align::None {
            s
        } else {
            if vb.aspect.slice {
                self.expand_to(s)
            } else {
                self.scale_to(s)
            }
        }
    }

    /// Converts the current size to `Rect` at provided position.
    #[inline]
    pub fn to_rect(&self, x: f64, y: f64) -> Rect {
        Rect::new(x, y, self.width, self.height).unwrap()
    }
}

fn size_scale_f64(s1: Size, s2: Size, expand: bool) -> Size {
    let rw = s2.height * s1.width / s1.height;
    let with_h = if expand {
        rw <= s2.width
    } else {
        rw >= s2.width
    };
    if !with_h {
        Size::new(rw, s2.height).unwrap()
    } else {
        let h = s2.width * s1.height / s1.width;
        Size::new(s2.width, h).unwrap()
    }
}

impl std::fmt::Debug for Size {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "Size({} {})", self.width, self.height)
    }
}

impl std::fmt::Display for Size {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{:?}", self)
    }
}

impl FuzzyEq for Size {
    #[inline]
    fn fuzzy_eq(&self, other: &Self) -> bool {
        self.width.fuzzy_eq(&other.width) && self.height.fuzzy_eq(&other.height)
    }
}

/// A path bbox representation.
///
/// The same as [`Rect`], but width or height are allowed to be zero
/// to represent horizontal or vertical lines.
#[derive(Clone, Copy)]
pub struct PathBbox {
    x: f64,
    y: f64,
    width: f64,
    height: f64,
}

impl PathBbox {
    /// Creates a new `PathBbox` from values.
    #[inline]
    pub fn new(x: f64, y: f64, width: f64, height: f64) -> Option<Self> {
        if width.is_valid_length() || height.is_valid_length() {
            Some(PathBbox {
                x,
                y,
                width,
                height,
            })
        } else {
            None
        }
    }

    /// Creates a new `PathBbox` for bounding box calculation.
    ///
    /// Shorthand for `PathBbox::new(f64::MAX, f64::MAX, 1.0, 1.0)`.
    #[inline]
    pub fn new_bbox() -> Self {
        PathBbox::new(f64::MAX, f64::MAX, 1.0, 1.0).unwrap()
    }

    /// Returns X position.
    #[inline]
    pub fn x(&self) -> f64 {
        self.x
    }

    /// Returns Y position.
    #[inline]
    pub fn y(&self) -> f64 {
        self.y
    }

    /// Returns width.
    #[inline]
    pub fn width(&self) -> f64 {
        self.width
    }

    /// Returns height.
    #[inline]
    pub fn height(&self) -> f64 {
        self.height
    }

    /// Returns left edge position.
    #[inline]
    pub fn left(&self) -> f64 {
        self.x
    }

    /// Returns right edge position.
    #[inline]
    pub fn right(&self) -> f64 {
        self.x + self.width
    }

    /// Returns top edge position.
    #[inline]
    pub fn top(&self) -> f64 {
        self.y
    }

    /// Returns bottom edge position.
    #[inline]
    pub fn bottom(&self) -> f64 {
        self.y + self.height
    }

    /// Expands the `PathBbox` to the provided size.
    #[inline]
    pub fn expand(&self, r: PathBbox) -> Self {
        if self.fuzzy_eq(&PathBbox::new_bbox()) {
            r
        } else {
            let x1 = self.x().min(r.x());
            let y1 = self.y().min(r.y());

            let x2 = self.right().max(r.right());
            let y2 = self.bottom().max(r.bottom());

            PathBbox::new(x1, y1, x2 - x1, y2 - y1).unwrap()
        }
    }

    /// Transforms the `PathBbox` using the provided `bbox`.
    pub fn bbox_transform(&self, bbox: Rect) -> Self {
        let x = self.x() * bbox.width() + bbox.x();
        let y = self.y() * bbox.height() + bbox.y();
        let w = self.width() * bbox.width();
        let h = self.height() * bbox.height();
        PathBbox::new(x, y, w, h).unwrap()
    }

    /// Transforms the `PathBbox` using the provided `Transform`.
    ///
    /// This method is expensive.
    pub fn transform(&self, ts: &Transform) -> Option<Self> {
        use crate::pathdata::PathData;

        if !ts.is_default() {
            // TODO: remove allocation
            let path = PathData::from_rect(self.to_rect()?);
            path.bbox_with_transform(*ts, None)
        } else {
            Some(*self)
        }
    }

    /// Converts into a [`Rect`].
    pub fn to_rect(&self) -> Option<Rect> {
        Rect::new(self.x, self.y, self.width, self.height)
    }
}

impl FuzzyEq for PathBbox {
    #[inline]
    fn fuzzy_eq(&self, other: &Self) -> bool {
        self.x.fuzzy_eq(&other.x)
            && self.y.fuzzy_eq(&other.y)
            && self.width.fuzzy_eq(&other.width)
            && self.height.fuzzy_eq(&other.height)
    }
}

impl std::fmt::Debug for PathBbox {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "PathBbox({} {} {} {})",
            self.x, self.y, self.width, self.height
        )
    }
}

impl std::fmt::Display for PathBbox {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{:?}", self)
    }
}

/// A rect representation.
///
/// Width and height are guarantee to be > 0.
#[derive(Clone, Copy)]
pub struct Rect {
    x: f64,
    y: f64,
    width: f64,
    height: f64,
}

impl Rect {
    /// Creates a new `Rect` from values.
    #[inline]
    pub fn new(x: f64, y: f64, width: f64, height: f64) -> Option<Self> {
        if width.is_valid_length() && height.is_valid_length() {
            Some(Rect {
                x,
                y,
                width,
                height,
            })
        } else {
            None
        }
    }

    /// Creates a new `Rect` for bounding box calculation.
    ///
    /// Shorthand for `Rect::new(f64::MAX, f64::MAX, 1.0, 1.0)`.
    #[inline]
    pub fn new_bbox() -> Self {
        Rect::new(f64::MAX, f64::MAX, 1.0, 1.0).unwrap()
    }

    /// Returns rect's size.
    #[inline]
    pub fn size(&self) -> Size {
        Size::new(self.width, self.height).unwrap()
    }

    /// Returns rect's X position.
    #[inline]
    pub fn x(&self) -> f64 {
        self.x
    }

    /// Returns rect's Y position.
    #[inline]
    pub fn y(&self) -> f64 {
        self.y
    }

    /// Returns rect's width.
    #[inline]
    pub fn width(&self) -> f64 {
        self.width
    }

    /// Returns rect's height.
    #[inline]
    pub fn height(&self) -> f64 {
        self.height
    }

    /// Returns rect's left edge position.
    #[inline]
    pub fn left(&self) -> f64 {
        self.x
    }

    /// Returns rect's right edge position.
    #[inline]
    pub fn right(&self) -> f64 {
        self.x + self.width
    }

    /// Returns rect's top edge position.
    #[inline]
    pub fn top(&self) -> f64 {
        self.y
    }

    /// Returns rect's bottom edge position.
    #[inline]
    pub fn bottom(&self) -> f64 {
        self.y + self.height
    }

    /// Translates the rect by the specified offset.
    #[inline]
    pub fn translate(&self, tx: f64, ty: f64) -> Self {
        Rect {
            x: self.x + tx,
            y: self.y + ty,
            width: self.width,
            height: self.height,
        }
    }

    /// Translates the rect to the specified position.
    #[inline]
    pub fn translate_to(&self, x: f64, y: f64) -> Self {
        Rect {
            x,
            y,
            width: self.width,
            height: self.height,
        }
    }

    /// Checks that the rect contains a point.
    #[inline]
    pub fn contains(&self, x: f64, y: f64) -> bool {
        if x < self.x || x > self.x + self.width - 1.0 {
            return false;
        }

        if y < self.y || y > self.y + self.height - 1.0 {
            return false;
        }

        true
    }

    /// Expands the `Rect` to the provided size.
    #[inline]
    pub fn expand(&self, r: Rect) -> Self {
        if self.fuzzy_eq(&Rect::new_bbox()) {
            r
        } else {
            let x1 = self.x().min(r.x());
            let y1 = self.y().min(r.y());

            let x2 = self.right().max(r.right());
            let y2 = self.bottom().max(r.bottom());

            Rect::new(x1, y1, x2 - x1, y2 - y1).unwrap()
        }
    }

    /// Transforms the `Rect` using the provided `bbox`.
    pub fn bbox_transform(&self, bbox: Rect) -> Self {
        let x = self.x() * bbox.width() + bbox.x();
        let y = self.y() * bbox.height() + bbox.y();
        let w = self.width() * bbox.width();
        let h = self.height() * bbox.height();
        Rect::new(x, y, w, h).unwrap()
    }

    /// Transforms the `Rect` using the provided `Transform`.
    ///
    /// This method is expensive.
    pub fn transform(&self, ts: &Transform) -> Option<Self> {
        use crate::pathdata::PathData;

        if !ts.is_default() {
            let path = PathData::from_rect(*self);
            path.bbox_with_transform(*ts, None)
                .and_then(|r| r.to_rect())
        } else {
            Some(*self)
        }
    }

    /// Returns rect's size in screen units.
    #[inline]
    pub fn to_path_bbox(&self) -> PathBbox {
        // Never fails, because `Rect` is more strict than `PathBbox`.
        PathBbox::new(self.x, self.y, self.width, self.height).unwrap()
    }
}

impl FuzzyEq for Rect {
    #[inline]
    fn fuzzy_eq(&self, other: &Self) -> bool {
        self.x.fuzzy_eq(&other.x)
            && self.y.fuzzy_eq(&other.y)
            && self.width.fuzzy_eq(&other.width)
            && self.height.fuzzy_eq(&other.height)
    }
}

impl std::fmt::Debug for Rect {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(
            f,
            "Rect({} {} {} {})",
            self.x, self.y, self.width, self.height
        )
    }
}

impl std::fmt::Display for Rect {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "{:?}", self)
    }
}

/// Representation of the [`<transform>`] type.
///
/// [`<transform>`]: https://www.w3.org/TR/SVG2/coords.html#InterfaceSVGTransform
#[derive(Clone, Copy, PartialEq, Debug)]
#[allow(missing_docs)]
pub struct Transform {
    pub a: f64,
    pub b: f64,
    pub c: f64,
    pub d: f64,
    pub e: f64,
    pub f: f64,
}

impl From<svgtypes::Transform> for Transform {
    fn from(ts: svgtypes::Transform) -> Self {
        Transform::new(ts.a, ts.b, ts.c, ts.d, ts.e, ts.f)
    }
}

impl Transform {
    /// Constructs a new transform.
    #[inline]
    pub fn new(a: f64, b: f64, c: f64, d: f64, e: f64, f: f64) -> Self {
        Transform { a, b, c, d, e, f }
    }

    /// Constructs a new translate transform.
    #[inline]
    pub fn new_translate(x: f64, y: f64) -> Self {
        Transform::new(1.0, 0.0, 0.0, 1.0, x, y)
    }

    /// Constructs a new scale transform.
    #[inline]
    pub fn new_scale(sx: f64, sy: f64) -> Self {
        Transform::new(sx, 0.0, 0.0, sy, 0.0, 0.0)
    }

    /// Constructs a new rotate transform.
    #[inline]
    pub fn new_rotate(angle: f64) -> Self {
        let v = angle.to_radians();
        let a = v.cos();
        let b = v.sin();
        let c = -b;
        let d = a;
        Transform::new(a, b, c, d, 0.0, 0.0)
    }

    /// Converts `Rect` into bbox `Transform`.
    #[inline]
    pub fn from_bbox(bbox: Rect) -> Self {
        Self::new(bbox.width(), 0.0, 0.0, bbox.height(), bbox.x(), bbox.y())
    }

    /// Translates the current transform.
    #[inline]
    pub fn translate(&mut self, x: f64, y: f64) {
        self.append(&Transform::new_translate(x, y));
    }

    /// Scales the current transform.
    #[inline]
    pub fn scale(&mut self, sx: f64, sy: f64) {
        self.append(&Transform::new_scale(sx, sy));
    }

    /// Rotates the current transform.
    #[inline]
    pub fn rotate(&mut self, angle: f64) {
        self.append(&Transform::new_rotate(angle));
    }

    /// Rotates the current transform at the specified position.
    #[inline]
    pub fn rotate_at(&mut self, angle: f64, x: f64, y: f64) {
        self.translate(x, y);
        self.rotate(angle);
        self.translate(-x, -y);
    }

    /// Appends transform to the current transform.
    #[inline]
    pub fn append(&mut self, other: &Transform) {
        let ts = multiply(self, other);
        self.a = ts.a;
        self.b = ts.b;
        self.c = ts.c;
        self.d = ts.d;
        self.e = ts.e;
        self.f = ts.f;
    }

    /// Prepends transform to the current transform.
    #[inline]
    pub fn prepend(&mut self, other: &Transform) {
        let ts = multiply(other, self);
        self.a = ts.a;
        self.b = ts.b;
        self.c = ts.c;
        self.d = ts.d;
        self.e = ts.e;
        self.f = ts.f;
    }

    /// Returns `true` if the transform is default, aka `(1 0 0 1 0 0)`.
    pub fn is_default(&self) -> bool {
        self.a.fuzzy_eq(&1.0)
            && self.b.fuzzy_eq(&0.0)
            && self.c.fuzzy_eq(&0.0)
            && self.d.fuzzy_eq(&1.0)
            && self.e.fuzzy_eq(&0.0)
            && self.f.fuzzy_eq(&0.0)
    }

    /// Returns transform's translate part.
    #[inline]
    pub fn get_translate(&self) -> (f64, f64) {
        (self.e, self.f)
    }

    /// Returns transform's scale part.
    #[inline]
    pub fn get_scale(&self) -> (f64, f64) {
        let x_scale = (self.a * self.a + self.c * self.c).sqrt();
        let y_scale = (self.b * self.b + self.d * self.d).sqrt();
        (x_scale, y_scale)
    }

    /// Applies transform to selected coordinates.
    #[inline]
    pub fn apply(&self, x: f64, y: f64) -> (f64, f64) {
        let new_x = self.a * x + self.c * y + self.e;
        let new_y = self.b * x + self.d * y + self.f;
        (new_x, new_y)
    }

    /// Applies transform to selected coordinates.
    #[inline]
    pub fn apply_to(&self, x: &mut f64, y: &mut f64) {
        let tx = *x;
        let ty = *y;
        *x = self.a * tx + self.c * ty + self.e;
        *y = self.b * tx + self.d * ty + self.f;
    }
}

#[inline(never)]
fn multiply(ts1: &Transform, ts2: &Transform) -> Transform {
    Transform {
        a: ts1.a * ts2.a + ts1.c * ts2.b,
        b: ts1.b * ts2.a + ts1.d * ts2.b,
        c: ts1.a * ts2.c + ts1.c * ts2.d,
        d: ts1.b * ts2.c + ts1.d * ts2.d,
        e: ts1.a * ts2.e + ts1.c * ts2.f + ts1.e,
        f: ts1.b * ts2.e + ts1.d * ts2.f + ts1.f,
    }
}

impl Default for Transform {
    #[inline]
    fn default() -> Transform {
        Transform::new(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
    }
}

impl FuzzyEq for Transform {
    fn fuzzy_eq(&self, other: &Self) -> bool {
        self.a.fuzzy_eq(&other.a)
            && self.b.fuzzy_eq(&other.b)
            && self.c.fuzzy_eq(&other.c)
            && self.d.fuzzy_eq(&other.d)
            && self.e.fuzzy_eq(&other.e)
            && self.f.fuzzy_eq(&other.f)
    }
}

/// View box.
#[derive(Clone, Copy, Debug)]
pub struct ViewBox {
    /// Value of the `viewBox` attribute.
    pub rect: Rect,

    /// Value of the `preserveAspectRatio` attribute.
    pub aspect: AspectRatio,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn bbox_transform_1() {
        let r = Rect::new(10.0, 20.0, 30.0, 40.0).unwrap();
        assert!(r
            .bbox_transform(Rect::new(0.2, 0.3, 0.4, 0.5).unwrap())
            .fuzzy_eq(&Rect::new(4.2, 10.3, 12.0, 20.0).unwrap()));
    }
}